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Abstract

Convex optimization with combinatorial characteristics:
new algorithms for linear programming, min-cost flow, and other structured problems

Sally Dong

Chair of the Supervisory Committee:

Yin Tat Lee

Paul G. Allen School of Computer Science and Engineering

This thesis focuses on algorithmic questions arising from discrete mathematics, with a partic-
ular emphasis on optimization on planar graphs. Historically, research in this area followed in
one of two approaches: 1). Design problem-specific algorithms that are combinatorial in nature
and make use of structures in the underlying discrete object [148], and 2). Cast the problem as
a general optimization problem, typically a linear program (LP), and apply a general-purpose
LP solver [52, 98, 145, 161]. My work unifies the two approaches in the design and analysis
of fast algorithms, guided by the question: How can we customize general-purpose convex
optimization techniques to apply to problems with significant underlying structural properties?
By combining a wide-ranging set of tools under this paradigm, including convex analysis,
sketching algorithms, data structures, numerical linear algebra, and structural combinatorics,
we are able to design new algorithms for cornerstone problems in theoretical computer science,
with runtimes that are significant improvements over the existing state-of-the-art. This thesis
contains the following results:

1. The first high-accuracy LP solver for α-separable LPs with n constraints andm variables.
The algorithm runs in Õ(m1/2+2α) time [57], compared to the previous best Õ(mω) time
with no consideration for separability [44], where ω ≈ 2.37 is the matrix-multiplication
constant. A special case here is planar LPs in Õ(n1.5) time;

2. The fastest algorithm to solve min-cost flow on planar graphs with n vertices in
Õ(n) time [56], which is nearly-optimal, and predates the current best almost-optimal



algorithm for general graphs [39];

3. The first high-accuracy LP solver for LPs with n constraints, m variables, and treewidth
τ . The algorithm runs in Õ(mτ (ω+1)/2) time [58];

4. The first algorithm to solve min-cost flow on graphs with treewidth τ , running in
Õ(mτ 1/2 + nτ) time [60];

5. The fastest algorithm to solve k-commodity flow on planar graphs on n vertices in
Õ(k2.5n1.5) time [57], compared to the previous best Õ(kωnω) time with no consideration
for planarity [44];

6. The fastest algorithm to compute circle-packing representations of planar graphs [59],
with an improvement of a cubic factor over the existing algorithm [129].
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Preface

This thesis is organized as a monograph, rather than simply a compilation of my published
papers. With this decision, I hope it can serve as a self-contained exposition on the topic of
structured linear program solvers for future researchers.

The technical content is primarily based on the sequence of papers [58, 56, 57, 60], written
with my co-authors Yu Gao, Gramoz Goranci, Yin Tat Lee, Lawrence Li, Richard Peng,
Sushant Sachdeva, and Guanghao Ye. The robust interior point method in Chapter 2 was
first introduced by Cohen, Lee, and Song [43], and has more general applications than what
is discussed here. Due to the significant iterative changes across these papers, as well as their
length and density of notation, the core ideas have been somewhat obfuscated. This thesis
is an effort to remedy the situation, by presenting the material in a complete and logical
manner.

I would like to thank the anonymous reviewers who gave helpful comments and feedback
throughout this line of work. In particular, one reviewer for our submission to the Journal
of the ACM painstaking went through the 100-page manuscript and found many errors and
oversights in our proofs. I am grateful for their time and their rigorous standard.
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Notation

Computational model.

In our algorithms, we assume arithmetic operations are performed exactly using real
numbers in O(1) time.

General.

• R denotes the set of real numbers, and R≥0 denotes the set of non-negative real numbers.
By default, variables that are unspecified are assumed to be real numbers.

• Z denotes the set of integers, and z≥0 denotes the set of non-negative integers.
• Given a set S and an element v, we use S − v as a shorthand to denote S \ {v}.
• Vectors are denoted by bold lowercase letters (Latin and Greek), such as v.
• Matrices are denoted by bold uppercase letters, such as M.
• Scalars are denoted by regular, unbolded letters, such as x.
• We use 0 for the all-zeros vector and matrix; I for the identity matrix; and 1 for the

all-ones vector and matrix. The dimensions should always be determined by context.
• For two scalars x and y, we define x ≤t y to mean x ≤ ety, and analogously ≥t.
• ω ≈ 2.37 is the fast matrix-multiplication constant.
• We use standard big-O notation. Additionally, Õ(f(n)) is used to hide logarithmic

factors, i.e. Õ(f(n))
def
= O(f(n) logk f(n)) for some universal constant k.

Calculus.

• For an n-dimensional, three-times differentiable function f(x), we use D3f(x) to denote
the tensor of third-order partial derivatives.

• Given some set K in Euclidean space, we use int(K) to denote its interior, and ∂(K)

to denote its boundary.
• We use B(x, r) to denote the ball centered at point x with radius r.
• We make liberal use of Taylor expansions, usually without specifying.

Linear algebra.

v



• The transpose of a matrix or vector is denoted by a > superscript.
• For any vector v and scalar x, we define v + x to be the vector obtained by adding x

to each entry of v, and similarly v − x the vector obtained by subtracting x from each
entry of v.

• For two vectors x,y, we use x ◦ y to denote their entry-wise product.
• For any vector v, its Euclidean-norm is denoted by ‖v‖2. Its local norm with respect to

a symmetric matrix M is denoted by ‖v‖M
def
=
√
v>Mv. Its zero norm, or equivalently,

its number of non-zero entries, is denoted by nnz(v).
• For a symmetric n× n matrix M, its real eigenvalues are ordered λ1(M) ≤ λ2(M) ≤
· · · ≤ λn(M).

• The standard basis vectors are denoted by e1, . . . , en in n-dimensional space.
• For a vector x, we use xi to denote its i-th entry, and we use x[i] to denote its i-th
block; that is, x[i] is a vector, and x is the concatenation of x[1],x[2], . . . , up to some
x[m].

• For any vector x and index set S, we use x|S to denote the vector that is equal to x on
S and zero outside S.

• For a matrix M and index sets S, T , we use MS,T to denote the matrix equal to M on
S × T and zero everywhere else. Note that we omit the vertical bar that is used for
vectors.

• For two positive semidefinite (PSD) matrices A and B, we write A 4 B to mean B−A

is positive semidefinite. We write A ≈t B to mean e−tA 4 B � etA.
• When multiplying two matrices of different dimensions, say an m× n matrix with an
n× k matrix, we first partition both matrices into blocks of size min{m,n, k}, and then
use fast matrix-multiplication block-wise. The most common example, multiplying a
m× n matrix with an n× n matrix, where m ≥ n, takes (m/n)(nω) time.

• For any matrix M, we use M−1 to denote the inverse of M if it is an invertible matrix,
and the unique Moore-Penrose pseudo-inverse otherwise.

Graphs.

• In general, a graph is denoted by G = (V,E), and has n vertices and m edges.
• In the discussion of flow problems, graphs are assumed to be directed unless stated

otherwise.
• When we say a graph is edge-weighted, we mean an assignment of some positive weight

to each edge in the graph.
• Given a planar graph G = (V,E), we denote its dual graph by G∗ = (V ∗, E∗).

vi



• A hypergraph is a generalization of a graph. It has a set of vertices as a graph does,
and a set of hyperedges. An edge can be viewed as a set of two vertices; a hyperedge
generalizes this to be a set of any number of vertices.

Trees as data structures.

• While trees are graphs, we will often make use of them as data structures. When this
is the case, we use calligraphic font, such as T .

• We refer to vertices in a tree as nodes, so as to distinguish them from purely graph-
theoretic objects.

• For a rooted tree T , we write H ∈ T to mean H is a node in T .
• TH denotes the complete subtree of T rooted at node H.
• We say a node A is an ancestor of H and H is a descendant of A if H is in the subtree

rooted at A, and H 6= A.
• Given a set of nodes H in a rooted tree T , we use PT (H) to denote the set of nodes in
T that are either in H or are ancestors of some node in H.

• The level of a node in a tree has the following properties: the root is at level 0; the
maximum level is one less than the height of the tree; and the level of a node must be
at least one greater than the level of its parent, but this difference does not have to be
equal to one. We may assign levels to nodes arbitrarily as long as the above is satisfied.

• T (i) denotes the collection of all nodes at level i in T .
• PT (H, i) denotes the subset of PT (H) at level i.

Iterative algorithms.

• Step 0 in an iterative algorithm, for example, the robust interior point method, refers
to the initialization step.

• For k > 0, step k refers to the k-th iteration of the algorithm, which is the k-th time
the solution is updated.

• If an algorithm updates a variable x iteratively, then x(k) denotes the state of x at the
end of the k-th iteration.

• Our iterative algorithms often contain subroutines that are called at every iteration
with vectors as input. In these cases, the true input is not the full vector, but rather
only the entries that have changed compared to the input in the previous iteration.
Similarly, when the output is a vector, the true output is not the full vector but rather
only the changed entries compared to the previous output. This distinction is key in
bounding our runtimes, and can be implemented by representing vectors as lists.
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Chapter 1

Introduction

Linear programming is one of the most fundamental problems in computer science and
optimization. General techniques for solving linear programs, such as simplex methods [52],
ellipsoid methods [105], and interior point methods [98], have been developed and continuously
refined since the 1940s, and have later been found to be useful in a wide range of problems
spanning optimization, combinatorics, and machine learning.

For a standard linear program
min c>x

s.t. Ax = b

l ≤ x ≤ u
(LP)

where A ∈ Rn×m is a full-rank matrix, the current fastest high-accuracy algorithms take
either Õ(m2.373 log(1/ε)) time [43, 94] or Õ((

√
nm · nnz(A) + n2.5) log(1/ε)) time [165, 30]

to solve Eq. (LP) to ε accuracy. The current fastest exact algorithms for linear program take
either exp

(
O
(√

n log m−n
n

))
time [81], or the runtime depends on the magnitude of entries

of A. In this thesis, we are interested in high-accuracy algorithms for Eq. (LP).

When A is a dense matrix, in other words, the number of non-zero entries in A is on
the order of mn, these runtimes are close to optimal, as they nearly match the runtime
Õ((nnz(A) + nω) log(1/ε)) to solve the subproblem Ax = b, where ω ≈ 2.373 is the matrix
multiplication exponent. When A is sparse, as is the case in many problems arising from
both theory and applications, we ask if much faster runtimes are possible.

When n and m are the same order, this problem is highly non-trivial, even for linear systems.
It is only recently known how to solve a n×m sparse linear system in slightly faster than
mω time [142], and sub-quadratic time is insurmountable under the current techniques. It
turns out in practice however, sparse linear systems often exhibit additional structure; in
particular, separability is a condition much stronger than mere sparsity. For example, many
of the linear programs in the Netlib repository have sublinear treewidth, a parameter tightly
connected to separability (Fig. 1.1). For these structured linear systems, a small polynomial
dependence on their structural parameter still implies a much faster than quadratic runtime,
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hence making them a particularly suitable target of study for this thesis.
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Figure 1.1: The left plot shows some upper bound τ of treewidth vs problem dimension m
for all 109 feasible linear program instances in Netlib repository. We compute a upper bound
of treewidth using [99]. This shows that treewidth is between m1/2 and m3/4 for many linear
programs in this data set. The right plot shows that the runtime mτ 2 is sub-quadratic in the
input size nnz(A) for many linear programs in this data set.

The inspiration for focusing on separability stems from nested dissection [122] and methods
in numerical linear algebra [53]. The majority of recent developments in the design of efficient
linear program solvers have not leveraged these ideas underlying these faster linear system
solvers nor exploited any structure of the constraint matrix. As such, this work fills an
important gap in the existing literature.

Separability of a linear program can be captured succinctly by associating the constraint
matrix with a graph, for which there are very natural structural definitions. A special case of
separable is planar, and another special case is bounded-treewidth. We will present algorithms
for all three settings. In addition to solving the standard linear programming formulation, we
also present new results for flow problems, because the structure in the input graph readily
translates to structure in the constraint matrix.

In our most general result, we consider (LP) where the associated graph is known to be nα-
separable. We present an Õ((m+m1/2+2α) log(1/ε))-time algorithm for solving these problems
to ε relative accuracy. A notable case is when α = 1/2, which includes the family of planar
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and bounded-genus graphs [123]. It has also been empirically observed that road networks
on n vertices have separators of size n1/3[54, 147]. Our result should be compared against
the natural Õ(m1/2(m+mαω)) runtime, which directly follows from the fact that IPM-based
methods require Õ(

√
m) iterations, each of which can be implemented in O(m+mαω) time

using the nested dissection [122, 8] algorithm. For linear programs whose dual graph are
O(nα)-separable with α ≤ 1/4, our algorithm achieves Õ(m log(1/ε)) time, which is optimal
up to poly-logarithmic factors. Another implication of this result is an Õ(k5/2m3/2 log(1/ε))-
time algorithm to approximately solve the k-multicommodity flow problem on planar graphs.
Obtaining an LP solver whose time complexity is Õ(m+mαω), which would in turn nearly
match the time complexity for solving linear systems with recursively separable structure,
remains an outstanding open problem [78].

Using the same techniques, we further consider when the LP constraint matrix has treewidth
bounded by τ . Assuming a width τ tree decomposition is given, we design an algorithm for
solving (LP) in Õ(m · τ (ω+1)/2 log(1/ε)) time. When no tree decomposition is given, we can
combine our result with recent techniques in vertex-capacitated flow [20] for an algorithm
with Õ(m1+o(1) · tw2 log(1/ε)) runtime, where tw is the treewidth of the problem. Beyond
the practical consideration, whether there is a Õ(n · twO(1)) LP algorithm is important in
parameterized complexity. Most algorithms designed for low treewidth graphs rely on dynamic
programming, which naturally give algorithms with runtime exponential in treewidth even
for problems in P, such as reachability and shortest paths [5, 37, 38, 143]. There are only
a few problems in P that we know how to solve in Õ(n · twO(1)) time [73]. We refer to the
related works section for a discussion of these problems.

For min-cost flow, we consider the planar and bounded treewidth setting. We design a
nearly-linear time algorithm for min-cost flow in planar graphs with polynomially bounded
integer costs and capacities. The previous fastest algorithm for this problem is based on
IPMs and works for general sparse graphs in O(n1.5 ·poly(log n)) time [51]. We also obtain an
algorithm for min-cost flow in graphs with n vertices and m edges, given a tree decomposition
of width τ and size S, and polynomially bounded, integral edge capacities and costs, running
in Õ(m

√
τ +S) time, where we use the exact same techniques as the planar result. In general

graphs where treewidth is trivially bounded by n, the algorithm runs in Õ(m
√
n) time, which

is the best-known result without using the Lee-Sidford barrier or `1 IPM, demonstrating
the surprising power of robust interior point methods. Finally, as a corollary, we obtain a
Õ(tw3 ·m) time algorithm to compute a tree decomposition of width O(tw · log(n)), given a
graph with m edges.
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1.1 Challenges

In this section, we discuss a few alternate approaches and why they likely prove unfruitful, in
order to place our result in context.

Dynamic programming for low-treewith linear programming. Dynamic program-
ming is a natural first approach, as has been applied to other low-treewidth problems. To
explain the difficulty of achieving fully-polynomial-time fixed-parameter tractability in the
optimization setting, we consider the following simplified problem: Given a graph G = (V,E)

with a convex function fe : R2 → R for every edge e ∈ E, consider the objective function on
RV defined by

fG(x) =
∑
ij∈E

fij(xi,xj). (1.1)

To divide the problem into smaller one, we consider any small balanced vertex separator
S ⊂ V ; namely V is partition into three sets S, L and R such that there are no edges between
L and R. We can write the objective function f(x) by

fG(x) = fL(x) + fR(x) + fG−E(L)−E(R)(x),

where fT (x) =
∑

ij∈E(T ) fij(xi,xj) and E(T ) is the set of edges with at least one end point
in T . To minimize fG, it suffices to fix xS and recursively minimizing x on L and R, and
minimize over all fixed xS. Namely,

min
x
fG(x) = min

xS
fG−E(L)−E(R)(xS) + f̃L(xS) + f̃R(xS).

where f̃L(xS) = minxL f(xS,xL) and f̃R(xS) = minxR f(xS,xR). Here, we crucially use the
fact that fG−E(L)−E(R)(x) depends only on the variables in S, but not L and R; the term fL
depends only on the variables in L and S, but not R; similarly for fR. In general, if f is
convex, then both f̃L and f̃R are convex functions on RS. Hence, the formula shows that we
can solve the optimization problem by first constructing the reduced problem on G[L] and
G[R], then solve a size |S| optimization problem.

If the fij’s are all quadratic functions, then both f̃L and f̃R are quadratic functions, and it
turns out they can be stored as matrices known as Schur complements. Hence, we can solve
the problem with the approach described above; in fact, algebraic manipulation gives the
sparse Cholesky factorization algorithm with runtime Õ(m · τ 2).

However, for general convex function fG, it is not known how to store the functions f̃L and
f̃R efficiently, and this will likely require runtime exponential in treewidth. At a high level,
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the reason is that before we solve the outer problem fG, we do not know at which fixed xS
we should recurse on for f̃L and f̃R. It is known that without adaptivity, exponentially many
oracle calls are needed to minimize a general convex function [132, 16, 34]. This suggests we
should compute f̃L and f̃R recursively for each different xS. However, it is likely that we
need to access at least two different points xS, and this already leads to runtime recursion
T (n) ≥ 4T (n/2) +O(1) which is at least n2. Therefore, dynamic programming appears to be
inefficient for general convex optimization.

Scanning through variables. When the underlying structure of the variable dependencies
is simple enough, a simple scan through the variables may suffice for the problem at hand;
for example, [62] successfully applies this approach for function-fitting problems on a path.
To illustrate, consider a problem of the form

min
x
F (x)

def
= f1(x1,x2, . . . ,xk) + f2(x2, . . . ,xk+1) + f3(x3, . . . ,xk+2) + . . . .

Suppose x∗ is the unique minimizer of the function and x∗1,x∗2, · · · ,x∗k−1 are given. By looking
at the gradient of the function above at the first coordinate, we know that

∂

∂x1

F (x) =
∂

∂x1

f1(x∗1,x
∗
2, · · · ,x∗k) = 0.

Since x∗1,x∗2, · · · ,x∗k−1 is given, this is a one variable non-linear equation on x∗k and it has
a unique solution under mild assumptions. Solving these equations, we obtain x∗k. Now,
looking at ∂

∂x2
F (x), we have that

∂

∂x2

F (x) =
∂

∂x2

f1(x∗1,x
∗
2, · · · ,x∗k) +

∂

∂x2

f2(x∗2,x
∗
3, · · · ,x∗k+1) = 0.

Since we already know x∗1, · · · ,x∗k, this is again a one variable non-linear equation. Therefore,
we can solve this problem one variable at a time.

This approach can be modelled by an underlying graph structure in the following sense: Each
variable xi is represented by vertex i of the graph, and i ∼ j if there is some a term fk
dependent on both i and j. We say a vertex i is solved if we know x∗i . In the example above,
the graph is a thick path, and if the first k − 1 vertices are solved at the beginning, then we
can follow the path to solve the remaining vertices one by one.

Unfortunately, this type of scan-based algorithm cannot be generalized. Consider a convex
function of the form (1.1) where the graph G is a complete binary tree with n leaves. Let i be
a vertex such that the subtree rooted at i is of height two containing four leaves. Observe that
we cannot solve for the children of i by case analysis, if both i and the leaves are unsolved.
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Since there are n/4 many subtree of height two in G, at least n/4 many variables must be
known at the beginning, before we can follow the graph structure to solve for the remaining
variables. As such, this approach does not produce any meaningful simplification.

Tightening the iterations bounds for interior point methods. Another natural
approach for attacking the conjecture is to prove that existing polynomial time methods for
linear program run faster automatically for graphs with low treewidth. Currently, there are
two family of polynomial time algorithms – the ellipsoid method (more generally cutting
plane methods) and interior point methods. For cutting plane methods, m iterations are
needed in general, since the method only obtains one hyperplane per iteration, and we need
m hyperplane simply to represent the solution even for the case of constant treewidth. In
general, these hyperplanes are represented by dense vectors and will probably take m2 time
in total.

For interior point methods, the iteration bound is less clear since there is no information
obstruction. In general, it is known that O(

√
m log(1/ε)) iterations are needed to solve a

linear program, and each iteration involves solving a linear system. For the case n = Θ(m) in
particular, this bound has not been improved since the ’80s. In fact, it has been shown that
the standard interior point method used in practice indeed takes Ω(

√
m log(1/ε)) iterations

in the worst case [131, 7], and some of these constructions have O(1) treewidth. Even for
concrete problems such as maximum flow, difficult instances for iterative methods often
have treewidth O(1) [103]. These lower bounds suggest that obtaining an optimization
method with iteration count that is only a function of treewidth requires a substantively new
algorithm.

In the case of the min-cost flow results, the Ω(
√
n) term comes from the fact that IPM

uses the electrical flow problem (`2-type problem) to approximate the shortest path problem
(`1-type problem). This Ω(

√
n) term is analogous to the flow decomposition barrier: in the

worst case, we need Ω(n) shortest paths (`1-type problem) to solve the max-flow problem
(`∞-type problem). Since `2 and `∞ problems differ a lot when there are s-t paths with
drastically different lengths, difficult instances for electrical flow-based max-flow methods
are often serial-parallel (see Figure 3 in [41] for an example). Therefore, planarity does not
help to improve the

√
n term. Although more general `2 + `p primitives have been developed

[2, 111, 3, 1], exploiting their power in designing current algorithms for exact max-flow
problem has been limited to perturbing the IPM trajectory, and such a perturbation only
works when the residual flow value is large. In all previous works tweaking IPMs for breaking
the 3/2-exponent barrier [125, 126, 45, 100, 14], an augmenting path algorithm is used to
send the remaining flow at the end. Due to the residual flow restriction, all these results
assume unit-capacities on edges, and it seems unlikely that planarity can be utilized to design
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an algorithm for polynomially-large capacities with fewer than
√
n IPM iterations.

Faster iterations via inverse maintenance. Dual to the previous approach is the idea
of speeding up each iteration of interior point methods. Each iteration of these methods
require some computation or maintenance involving a term (AWA>)−1 for some non-negative
diagonal W; previous work on linear programming focused on inverse maintenance techniques
to accomplish this either explicitly or implicitly. In [43, 165, 94], the inverse is explicitly
maintained and this takes at least n2 time in total. [164, 30] focused on IPM for the bipartite
matching problem and the maximum flow problem, where a sparsified Laplacian system
AWA>x = b is solved directly in each iteration and hence the whole algorithm takes at least
n per step and n1.5 time in total, where d is the number of vertices. It seems that either
approach cannot lead to nearly linear time (when m = Θ(n)).

In our low-treewidth setting, one natural approach is to maintain the Cholesky factorization
LL> = AWA>. This can be done in nearly-linear time in total, by combining ideas from
numerical methods [53] and previous algorithms mentioned above. Unfortunately, in general,
almost any sparse update in W leads to Ω(n) changes in L−1. Hence, it seems difficult to get
a runtime faster than n1.5 by just combining inverse maintenance with current knowledge of
sparse Cholesky factorization.

When used to design graph algorithms, the i-th iteration of a robust IPM involves computing
an electrical flow on G. The edge support remains unchanged between iterations, though the
edge weights change. Further, if Ki is the number of edges with weight changes between Gi

and Gi+1, then robust IPMs guarantee that∑
i

√
Ki = Õ(

√
m logM).

Roughly, this says that, on average, each edge weight changes only poly-log many times
throughout the algorithm. Unfortunately, any sparsity bound is not enough to achieve
nearly-linear time. Unlike the shortest path problem, changing any edge in a connected
graph will result in the electrical flow changing on essentially every edge. Therefore, it is very
difficult to implement (robust) IPMs in sublinear time per iteration, even if the subproblem
barely changes every iteration. On moderately dense graphs with m = Ω(n1.5), this issue can
be avoided by first approximating the graph by sparse graphs and solving the electrical flow on
the sparse graphs. This leads to Õ(n)� Õ(m) time cost per step [166]. However, on sparse
graphs, significant obstacles remain. Recently, there has been a major breakthrough in this
direction by using random walks to approximate the electrical flow [75, 163]. Unfortunately,
this still requires m1− 1

58 time per iteration.
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Our planar min-cost flow result follows the approach in [58] and shows that this dense graph
can be sparsified. This is, however, subtle. Each step of the IPM makes a global update via
the implicit representation, hence checking whether the flow is feasible takes at least linear
time. Therefore, we need to ensure each step is exactly feasible despite the approximation. If
we are unable to do that, the algorithm will need to fix the flow by augmenting paths at the
end like [100, 14], resulting in super-linear time and polynomial dependence on capacities,
rather than logarithmic.

1.2 Related works

Linear systems. For the problem of solving the linear system Ax = b, George first
developed the method of nested dissection in [77], which leveraged the underlying graph
structure of A for the case where it is a grid. This was generalized by the seminal work of
Lipton, Rose and Tarjan in [122], to solving systems where A is any symmetric positive-
definite matrix whose underlying graph has good balanced vertex separators. Specifically,
their algorithm solves the linear system Ax = b in O(m+mαω) time when the associated
graph is O(nα)-separable. When α < 1, it outperforms the canonical O(mω)-time algorithm
for general linear systems. This was further extended by [9], to apply to non-singular matrices
over any field. The Cholesky factorization of A is a key part of all aforementioned results; it
has a long line of study in numerical analysis [53], and is used as the default sparse linear
system solver in various languages such as Julia, Matlab and Python.

Linear programming. The quest for understanding the computational complexity of
linear programming has a long and rich history in computer science and mathematics. Since
the seminal works of Khachiyan [105] and later Karmarkar [98], who were the first to prove
that LPs can be solved in polynomial time, the interior point method and its subsequent
variants have become the central methods for efficiently solving linear programs with provable
guarantees. This has led to a series of refined and more efficient IPM-based solvers [145, 162,
135, 115, 116, 44, 95], which culminated in the recent breakthrough work of Cohen, Lee, and
Song [44] who showed that an LP solver whose running time essentially matches the matrix
multiplication cost, up to small low-order terms. In a follow-up work, Brand [29] managed to
derandomize their algorithm while retaining the same time complexity.

Algorithms parametrized by treewidth. Arising from structural graph theory, treewidth
has become a focus of study in fixed-parameter tractable algorithms in various communities
including combinatorics, integer-linear programming, and numerical analysis. The notion of
treewidth is closely tied to vertex separators; specifically, low treewidth graphs have small ver-
tex separators, and this structure is amenable to a dynamic programming approach for various
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problems. Many NP-hard problems are known to have algorithms with runtime depending
linearly on the problem size and exponentially on treewidth [22] as the result of dynamic
programming. These include Independent Set, Hamiltonian Circuit, Steiner Tree,
and Travelling Salesman. Analogously, many problems in P should be solvable in
Õ(n · twO(1)) time; however, due to the lack of appropriate tools, only a few such results
are currently known. They are extensively studied as part of the class of fixed-parameter
tractible problems. In general, dynamic programming style approaches based on the tree
decomposition unfortunately almost always lead to an exponential dependence on treewidth,
even for polynomial-time solvable problems.

When the problem is linear algebraic, such as solving linear systems and computing rank or
determinant, the dynamic programming approaches often leads to runtime polynomial in
treewidth.

Recently, [73] showed several problems can be reduced to matrix factorizations efficiently,
including computing determinant, computing rank, and finding maximum matching, and this
leads to O(τO(1) · n) time algorithms where τ is the width of the given tree decomposition
of the graph. The only non-linear algebraic O(τO(1) · n) time problem we are aware of is
Unweighted Maximum Vertex-Flow [73], which makes use of the crucial fact that
the vertex separator size is directedly connected to the flow size to achieve a Õ(τ 2 · n)

runtime.

A long line of work in the integer-linear programming (ILP) community studies solving ILPs
with respect to fixed treedepth, a parameter related but more restrictive than treewidth;
indeed, ILPs can be weakly NP-hard even on instances with treewidth at most two. For an
ILP with treedepth denoted td(A), Eisenbrand et al [65] gave a weakly-polynomial ILPs
algorithm running in time O(g(min{td(A), td(A>)}) · poly(m)), where g is at least some
doubly-exponential function. This is followed-up by [50], which gave a strongly polynomial
algorithm running in 2O(td·2td)∆O(2td)m1+o(1) time, where ∆ is an upper-bound on the absolute
value of an entry of A. [65] also discussed how an algorithm for ILP may be used to solve
LP; [28] built on this to give an algorithm solving mixed integer-linear programs in time
f(a, td(A))poly(m), where a is the largest coefficient of the constraint matrix.

Max flow and min-cost flow on general graphs. Max flow and min-cost flow are
well-studied in both structured graphs and general graphs. Tables 1.1 and 1.2 summarize the
current best algorithms for different settings.

In what follows, we will focus on surveying only exact algorithms for max-flow and min-cost flow
on general graphs. For earlier developments on these problems, including fast approximation
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Min-cost flow Time bound Reference
Strongly polytime O(m2 log n+mn log2 n) [138]
Weakly polytime Õ(m1+o(1) log2M) [39]
Unit-capacity m

4
3

+o(1) logM [14]
Planar graph Õ(n log2M) [56]

Unit-capacity planar graph O(n4/3 logM) [97]
Graph with treewidth τ Õ(nτ 2 logM) [58]

Table 1.1: Fastest known exact algorithms for the min-cost flow problem, ordered by the
generality of the result. Here, n is the number of vertices, m is the number of edges, and M
is the maximum of edge capacity and cost value.

Max-flow Time bound Reference
Strongly polytime O(mn) [139, 106]
Weakly polytime Õ(m

3
2
− 1

328 logU) [75]
Pseudo polytime m

4
3

+o(1)U1/3 [100]
g-genus graph min(gO(g)n3/2, O(g8n log2 n log2 U)) [36]

Planar graph plus k edges O(k3n log n) [88]
Planar graph O(n log n) [26]

Undirected planar graph O(n log log n) [93]
st-planar graph O(n) [87]

Table 1.2: Fastest known exact algorithms for the max flow flow problem, ordered by the
generality of the result. Min-cost flow algorithms are omitted in the max flow table. Here, n
is the number of vertices, m is the number of edges, and U is the maximum edge capacity.
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algorithms, we refer the reader to the following works [106, 4, 41, 149, 103, 140, 151, 21], and
the references therein.

An important view, unifying almost all recent max-flow or min-cost flow developments, is
interpreting max-flow as the problem of finding one unit of s-t flow that minimizes the `∞
congestion of the flow vector. Motivated by the near-linear Laplacian solver of Spielman and
Teng [153] (which in turn can be used to solve the problem of finding one unit of s-t flow
that minimizes the `2 congestion), and the fact that the gap between `∞ and `2 is roughly
O(
√
m), Daitch and Spielman [51] showed how to implement the IPM for solving min-cost

flows in Õ(m3/2) time.

Follow-up works initially made progress on the case of unit capacitated graphs, with the work
of Madry [125] achieving an Õ(m10/7) time algorithm for max flow and thus being the first
to break the 3/2-exponent barrier in the runtime. The running time was later improved to
O(m4/3+o(1)) and it was generalized to the min-cost flow problem [15, 100].

For general, polynomially bounded capacities, Brand et al. [31] gave an improved algorithm
for dense graphs that runs in Õ(m+n3/2). In the sparse graph regime, Gao, Liu and Peng [75]
were the first to break the 3/2-exponent barrier by giving an Õ(m3/2−1/128) time algorithm,
which was later improved to Õ(m3/2−1/58) [163]. Very recently, the breakthrough work of
Chen et al. [39] shows that the min-cost flow problem can be solved in Õ(m1+o(1)), which is
optimal up to the subpolynomial term.

Max flow and min-cost flow on planar graphs. The study of flows on planar graphs
dates back to the celebrated work of Ford and Fulkerson [74] who showed that for the case of
s, t-planar graphs1, there is an O(n2) time algorithm for max flow. This was subsequently
improved to O(n log n) by Itai and Shiloach [92] and finally to O(n) by Henzinger et al [87],
the latter building upon a prior work of Hassin [83].

For general planar graphs, there have been two lines of work focusing on the undirected and
the directed version of the problem respectively. In the first setting, Reif [144] (and later
Hassin and Johnson [85]) gave an O(n log2 n) time algorithm. The state-of-the-art algorithm
is due to Italiano et al. [93] and achieves O(n log log n) runtime. Weihe [169] gave the first
speed-up for directed planar max flow running in O(n log n) time. However, his algorithm
required some assumptions on the connectivity of the input graph. Later on, Borradaile and
Klein [25] gave an O(n log n) algorithm for general planar directed graphs. Generalization of
planar graphs, e.g., graphs of bounded genus have also been studied in the context of the

1planar graphs where s and t lie on the same face
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max flow problem. The work of Chambers et al. [35] showed that these graphs also admit
near-linear time max flow algorithms.

Imai and Iwano [90] obtained an O(n1.594 logM) min-cost flow algorithm for graphs that
are O(

√
n)-recursively separable. For the min-cost flow problem on planar graphs with

unit capacities, Karczmarz and Sankowski [97] gave an O(n4/3) algorithm. Very recently,
Dong et al. [56] showed that the min-cost flow on planar directed graphs with polynomially
bounded capacities admits an Õ(n) time algorithm, which is optimal up to polylogarithmic
factors.

Multicommodity flow on general graphs. It is known that 2-commodity flow is as
hard as linear programming [91]. Recently, [55] showed a linear-time reduction from linear
programs to sparse k-commodity flow instance, indicating that sparse k-commodity flow
instances are hard to solve. This has led to renewed interest in solving k-commodity flow in
restricted settings, with the authors of [167] making progress on dense graphs. It is known
that we can solve multicommodity flow in the high-accuracy regime using linear programming.
For a graph with n nodes, m edges, and k commodities, the underlying constraint matrix
has km variables and kn+m equality constraints. Thus, using the best-known algorithms
for solving linear programs [44, 29], one can achieve a runtime complexity of Õ((km)ω) for
solving multi-commodity flow. In the special case of dense graphs, Brand and Zhang [167]
recently showed an improved algorithm achieving Õ(k2.5

√
mnω−1/2) runtime.

In the approximate regime, Leighton et al. [121] show that (1 + ε) multi-commodity flow on
undirected graphs can be solved in Õ(kmn), albeit with a rather poor dependency on ε. This
result led to several follow-up improvements in the low-accuracy regime [76, 72, 124]. Later
on, breakthrough works in approximating single commodity max flow in nearly-linear time
were also extended to the k-commodity flow problem on undirected graphs [103, 149, 140],
culminating in the work of Sherman [150] who achieved an Õ(mkε−1) time algorithm for the
problem.

Multi-commodity flow on planar graphs. The multi-commodity flow problem on
planar graphs was studied in the 1980s, but there has not been much interest in it until
most recently. Results in the past focused on finding conditions under which solutions
existed [136, 84], or finding simple algorithms in even more restricted settings, with the
authors of [127] demonstrating that the problem could be solved in O(kn+ n2(log n)1/2) time
if the sources and sinks were all on the outer face of the graph. More recently, [101] studied
the all-or-nothing version of planar multi-commodity flow, where flows have to be integral,
and demonstrate that an O(1)-approximation could be achieved in polynomial time.
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1.3 Thesis organization

The focus of this thesis is on solving linear programs of the form (LP).

In Chapter 2, we present the robust interior point method (IPM), which was first introduced
by Cohen, Lee, and Song in [117], and subsequently refined by Dong, Lee, Ye in [58]. This is
a general method for solving linear and convex programs to high accuracy, on top of which
we build our more refined techniques. The robust IPM algorithm iteratively improves the
solution, by performing updates of the form

x(new) ← x+ W1/2A>(AWA>)−1AW1/2v, (1.2)

where x is the current solution, v is a Newton step, and w controls how close x can come to
its boundaries l and u. In classical IPM, w and v are functions of x, whereas in the robust
IPM, they are functions of some `∞-approximation x of x.

In Chapter 3, we lay the technical foundations for incorporating the constraint matrix
structure into the robust IPM algorithm. It connects the matrix A to a graph, characterizes
the relevant structures in the graph, and encodes this information using a separator tree.
Then it introduces the concept of a tree operator, which is a linear operator that leverages
the structures of a tree. For our purposes, the tree is essentially the separator tree, though
we hope the concept finds more general application in the future.

In Chapters 4 and 5, we incorporate the structural ideas developed earlier into the IPM.
Chapter 4 writes the expression W1/2A>(AWA>)−1AW1/2 as tree operators, using the
decomposition from Chapter 3. Building on this, Chapter 5 gives the data structure that
implicitly represents x throughout the IPM. Dynamic updates to x are processed correctly
and efficiently, but notably, x is “hidden” in the data structure and only accessible through
specific types of queries. We maintain the `∞-approximation x to x throughout the IPM,
where the difficulty lies in the limited access to x. The solution requires clever data structure
design making use of the separator tree.

In Chapter 6, we present our results for linear programs, including separable LPs, bounded-
treewidth LPs, and k-commodity flow on planar graphs, which is a special form of separable
LPs. In Chapter 7, we present the min-cost flow results on planar and bounded-treewidth
graphs. When written as LPs, their constraint matrices are edge-vertex incidence matri-
ces of graphs, which allows us to leverage additional tools in fast Laplacian solvers and
approximate Schur complements for further improved runtimes. Here, significant care is
required to ensure feasibility in the solution updates, which is no longer guaranteed due to the
approximations. We then present the corollaries about general graphs and tree decomposition
computations.
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Chapter 8 is a serendipitous result on circle packing, which perhaps best embodies the theme
of combining convex optimization with combinatorial insights.
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Chapter 2

Robust interior point method for general convex sets

Consider the convex optimization problem

min c>x

s.t. Ax = b

x[i] ∈ Ki ∀i ∈ [m]

(P)

where A is a n× d matrix, x is the concatenation of the x[i] blocks, and each Ki ⊆ Rdi is a
convex set with

∑m
i=1 di = d. Let K def

= K1× · · · ×Km. Define the following given parameters
for the problem:

• Inner radius r: There exists some z such that Az = b and B(z, r) ⊂ K.
• Outer radius R: There exists some z′ such that K ⊂ B(z′, R).
• Lipschitz constant L: ‖c‖2 ≤ L.
• Self-concordant barrier function φ: For each i, we have a νi-self-concordant barrier

function φi on Ki, and weight wi ≥ 1. Let φ(x)
def
=
∑m

i=1wiφi(x[i]) and κ def
=
∑m

i=1 wiνi.

This is a very general problem formulation. Linear programs in standard form,

min c>x s.t. Ax = b, l ≤ x ≤ u,

can be written as (P), where each block x[i] simply refers to coordinate i, and Ki is the
interval [li,ui]. Convex problems of the form

min f(x) s.t. x ∈ K

can be transformed via the epigraph trick into

min t s.t. (x, t) ∈ {K × R : f(x) ≤ t},

where the feasible set is also called the epigraph of f and known to be convex.

A class of algorithms for solving (P) is interior point methods (IPM); these are iterative
algorithms that follow a central path in the interior of K, starting at some known point and
ending close to the minimizer of the problem. Fig. 2.1 presents a conceptual illustration.
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Figure 2.1: A simple illustration of the interior point method. The convex body represents
the feasible set; x? represents the optimal solution; and the curve represents the parametrized
central path. Source: [27, Figure 11.2].

In this chapter, we present a robust interior point method, first developed in [117], and later
refined in [58]. Compared to [117], [58] introduced approximate t in the algorithm to simplify
the main data structure; a new reduction for finding an initial point, allowing the algorithm
to output x exactly satisfying Ax = b; and new potential function cosh(‖ · · · ‖) instead of
exp(‖ · · · ‖) to simplify the proofs. We note that it is an interesting open question to extend
this result to dynamic weighted barriers such as the Lee-Sidford barrier [115], beyond the case
di = 1. For completeness, we begin with a brief review of standard interior point methods;
more details can be found in [27] and [170].

2.1 Background on IPMs

Given the problem (P), we define the primal and dual feasible sets

P def
= {x ∈ K : Ax = b}

D def
= {s ∈ Rd

≥0 : A>y + s = c for some y}.

We always assume P has non-empty interior.

The classical central path for the primal problem is given by

x?(t) = argmin
x∈P

c>x+ tφ(x).
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By definition of self-concordant barrier functions, φ(x)→∞ as x→ ∂K, hence x(t) lies in
the interior of P for any t > 0. When t = 0, we get back the original (P), so x?(0) is an
optimal solution. When t is large, x?(t) approaches the center of K (with respect to the
barrier function).

The barrier method is the most straighforwardly digestable approach and is described in
Algorithm 1. We assume a feasible x(init) ∈ int(K) is given on input.

Algorithm 1 Barrier method for Eq. (P) [27, Algorithm 11.1].
1: procedure PrimalPathFollowing(x(init), tstart, tend)
2: (x, t)← (x(init), tstart)

3: while t ≥ tend do
4: Compute x?(t) (using an iterative method) with x as the starting point
5: x← x?(t)

6: t← (1− h)t . h ∈ (0, 1) is a fixed multiplicative factor
7: end while
8: return x
9: end procedure

Primal-dual interior point methods further incorporate the dual variables into every iteration
of the path-following algorithm. KKT conditions stipulate that x?(t) satisfies

s?(t)

t
+∇φ(x?(t)) = 0

Ax?(t) = b,

A>y + s?(t) = c,

(2.1)

for unique dual variable s?(t). Note that the first non-linear equation has an unique solution
for any vector µ on the right hand side. In particular, the solution x is the solution of
the optimization problem minAx=b c

>x+ t
∑m

i=1wiφi(x[i])− tµ>x. Hence, we can move µ
arbitrarily while maintaining (2.2) by moving x and s.

We can define the central path via the modified KKT conditions

s?(t)

t
+∇φ(x?(t)) = µ

Ax?(t) = b,

A>y + s?(t) = c,

(2.2)
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where µ is close to 0 but does not need to be constant across iterations. Now, Algorithm 2
describes one attempt at a basic primal-dual interior point method. Similar to the primal-only
barrier method, it assumes feasible x(init), s(init) on input.

Algorithm 2 Basic primal-dual interior point method for Eq. (P).
1: procedure PrimalDualPathFollowing(x(init), s(init), tstart, tend)
2: (x, s, t)← (x(init), s(init), tstart)

3: while t ≥ tend do
4: Solve Eq. (2.2) to get x?(t), s?(t) with x, s as the starting point
5: (x, s)← (x?(t), s?(t))

6: t← (1− h)t . h ∈ (0, 1) is a fixed multiplicative factor
7: end while
8: return x
9: end procedure

We observe that the central path’s role is to iteratively guide the solution to the optimal
solution. In particular, there is no real need for the current solution to land on the central
path. Indeed, at one iteration, rather than solving for x?(t), s?(t), it suffices to take a Newton
step δx, δs on (2.2). The first KKT condition is (we simply write x to denote x?(t) for
readability):

s+ δs
t

+∇φ(x+ δx) = µ+ δµ,

Approximating ∇φ(x+ δx) ≈ ∇φ(x) +∇2φ(x)δx, we conclude the step is defined by

1

t
δs +∇2φ(x)δx = δµ.

This gives us the next version of the primal-dual IPM in Algorithm 3. With it, we are ready
to introduce the robust IPM.

2.2 Path following in the robust IPM

Similar to classical primal-dual interior point methods, our algorithm decreases the duality
measure t multiplicatively by a factor of (1− h) at every iteration for some fixed h, and then
takes a Newton-like step on (2.2) to improve the centrality of the current solution (x, s), in
other words, move it closer to the point on the central path corresponding to t. Robust refers
to robustness of the choice in the Newton step, which we discuss in subsequent sections.
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Algorithm 3 Primal-dual interior point method for Eq. (P), similar to [170, Page 8].
1: procedure PrimalDualPathFollowing2(x(init), s(init), tstart, tend)
2: (x, s, t)← (x(init), s(init), tstart)

3: while t ≥ tend do
4: Take a Newton-like step on Eq. (2.2). That is, find δx, δs satisfying

1

t
δs +∇2φ(x)δx = δµ

Aδx = 0

A>δy + δs = 0,

5: and update (x, s)← (x, s) + α(δx, δs)

with step size α chosen so that the new solution is strictly feasible.
6: t← (1− h)t . h ∈ (0, 1) is a fixed multiplicative factor
7: end while
8: return x
9: end procedure

Let us first introduce some notation.

Definition 2.1 (Induced norms). Let x ∈ K. For any i and any v ∈ Rni , we define

‖v‖x[i]

def
= ‖v‖∇2φi(x[i])

, and ‖v‖∗x[i]

def
= ‖v‖(∇2φi(x[i]))

−1 .

For the whole domain K def
=
∏m

i=1Ki and any v ∈ Rn, we define

‖v‖x
def
= ‖v‖∇2φ(x) =

√∑
i

wi

(∥∥v[i]

∥∥
x[i]

)2

, and

‖v‖∗x
def
= ‖v‖(∇2φ(x))−1 =

√∑
i

w−1
i

(∥∥v[i]

∥∥∗
x[i]

)2

.

To define centrality, we use the following potential function:

Definition 2.2 (Potential function). For each i ∈ [m], we define the error of (x, s) at time t
on block i by

µt[i](x, s)
def
=
s[i]

t
+ wi∇φi(x[i]).

Note that any point on the central path attains a value of 0. We define the centrality measure



20

via a local norm:

γti (x, s)
def
=
∥∥µt[i](x, s)

∥∥∗
x[i]

=
∥∥(∇2φi(x[i]))

−1/2µt[i](x, s)
∥∥

2
,

The normalization term (∇2φi(x[i]))
1/2 makes the centrality measure scale-invariant in Ki.

For any fixed scaling factor λ > 0, we define the soft-max function Ψ : Rm 7→ R≥0 by

Ψλ(γ)
def
=

m∑
i=1

cosh(λ
γi
wi

).

Finally, the potential function is the soft-max of the centrality measure

Φt(x, s)
def
= Ψλ(γ

t(x, s)).

Observe that any point on the central path has potential m.

Since the primal-dual variables x, s comes as a pair, we often omit the dual variables in the
function arguments for readability.

The following lemma showing that when the centrality measure is sufficiently small, a feasible
solution is indeed close to optimal.

Lemma 2.3 ([117, Lemma D.3]). Given the convex program (P), suppose we have solution
x, s and t satisfying

• Ax = b,
• x ∈ int(K),
• A>y + s = c for some y, and
• γti (x, s)

def
=
∥∥s[i]

t
+ wi∇φi(x[i])

∥∥∗
x[i]
≤ wi for each i ∈ [m].

Then,

c>x ≤ min
Ax=b, x∈K

c>x+ 3tκ.

Proof. Let x? def
= argminAx=b, x∈K c

>x, and let x(u) def
= (1− u)x+ ux? for some fixed u to be

chosen. Recall φ def
=
∑
wiφi, so by Lemma 2.29, we know〈

∇φ(x(u)),x? − x(u)
〉
≤
∑
i

wiνi
def
= κ.
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After rearranging, we get

κu

1− u
≥
〈
∇φ(x(u)),x(u) − x

〉
=
〈
∇φ(x(u))−∇φ(x),x(u) − x

〉
+
〈
∇φ(x),x(u) − x

〉
=
〈
∇φ(x(u))−∇φ(x),x(u) − x

〉
+
〈
µt(x, s),x(u) − x

〉
− 1

t

〈
s,x(u) − x

〉
(By definition on the second term)

For the third term, note that s = A>y − c and Ax(u) = Ax. For the first two terms, note
that φ and µ are both defined block-wise. Breaking it up into the m blocks, and applying
Lemma 2.29 to the first term and Cauchy-Schwarz to the second term, we get

≥
m∑
i=1

 wi

∥∥∥x(u)
[i] − x[i]

∥∥∥2

x[i]

1 +
∥∥∥x(u)

[i] − x[i]

∥∥∥
x[i]

−
∥∥µt[i](x, s)

∥∥∗
x[i]
·
∥∥∥x(u)

[i] − x[i]

∥∥∥
x[i]

− 1

t

〈
c,x(u) − x

〉
.

Next, we replace x(u)−x by u(x?−x), and apply the assumption γti (x, s) =
∥∥∥µt[i](x, s)

∥∥∥∗
x[i]

≤
wi, to get

≥
m∑
i=1

 wiu
2
∥∥∥x?[i] − x[i]

∥∥∥2

x[i]

1 + u
∥∥∥x?[i] − x[i]

∥∥∥
x[i]

− wiu ·
∥∥x?[i] − x[i]

∥∥
x[i]

− u

t
〈c,x? − x〉 .

Rearranging again, we get

〈c,x− x?〉 ≤ tκ

1− u
+ t

m∑
i=1

wi


∥∥∥x?[i] − x[i]

∥∥∥
x[i]

1 + u
∥∥∥x?[i] − x[i]

∥∥∥
x[i]

 .

Setting u = 1
2
, and recalling self-concordance is always greater than 1, we conclude

≤ 2tκ+ t
m∑
i=1

wiνi

≤ 3tκ.
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Algorithm 4 Path following in the robust interior point method

Definition of parameters:

λ
def
= 64 log(256m

m∑
i=1

wi), ε
def
=

1

1440λ
, α

def
=
ε

2
,

h
def
=

α

64
√∑m

i=1 wiνi
, εt

def
=
ε

4
·min

i

(
1

wi + νi

)

1: procedure PathFollowingRobust(A, φ,w,x(init), s(init), tstart, tend)
2: (x, s, t)← (x(init), s(init), tstart)

3: (x, s, t)← (x, s, t)

4: while t ≥ tend do
5: δµ,[i] ← −α · kti(x, s) · µt[i](x, s) for all i ∈ [m] . defined in Section 2.2.2
6: find δx and δs such that Aδx = 0, δs ∈ Range(A>) and∥∥∥δx −H

−1/2
x (I−Px)H

−1/2
x δµ

∥∥∥
x
≤ εα,∥∥∥δs − tH1/2

x PxH
−1/2
x δµ

∥∥∥∗
x
≤ εαt

7: x← x+ δx, s← s+ δs
8: update x, s to satisfy x ∈ int(K), s > 0, and for each i ∈ [m],

‖x[i] − x[i]‖x[i]
≤ ε,

‖s[i] − s[i]‖∗x[i]
≤ tεwi

9: t← (1− h) · t
10: update t to satisfy |t− t| ≤ εtt

11: end while
12: return (x, s)

13: end procedure

The next theorem summarizes the properties of our path-following algorithm:

Theorem 2.4. Suppose we are given the convex program (P), initial feasible primal-dual
solutions x(init), s(init) satisfying Ax(init) = b, x(init) ∈ K, A>y + s(init) = c for some y, and
duality measure tstart. Then, at the end of every iteration of PathFollowingRobust
(Algorithm 4), x, s, t satisfy
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• Ax = b,
• x ∈ int(K),
• A>y + s = c for some y, and
• Φt(x, s) ≤ max

{
Φtstart(x(init), s(init)), cosh( λ

64
)
}
.

Proof. At every iteration, the algorithm guarantees Aδx = 0 and δs ∈ Range(A>), and x, s
are updated to x + δx, s + δs respectively. Hence, at the end of the iteration, the linear
constraints are satisfied.

Theorem 2.14, proven shortly, shows that given the initial assumption, the potential is
bounded after each step as required. The fact x remains in the interior of K is implicit
through the choice of step size and in the proof of bounded potential.

The next three sections are dedicated to the details of this proof. In Section 2.2.1, we discuss
gradient descent on Φ that will motivate the definition of our Newton step. In Section 2.2.2,
we present the Newton step taken in our algorithm. In Section 2.2.3, we formally prove that
the potential is indeed bounded.

2.2.1 Gradient descent on Ψλ

Since our goal is to bound Φ(x, s)
def
= Ψλ(γt(x, s)), we first discuss how to decrease Ψλ(γ), if

the input vector γ could be directly controlled. This section will motivate our choices for our
robust path-following algorithm.

Suppose we can make step γ ← γ + δ with the step size constrained by
√∑

i δ
2
i /wi ≤ α for

some α. Then, a natural choice is the steepest descent direction:

δ?
def
= argmin√∑

i δ
2
i /wi≤α

〈∇Ψλ(γ), δ〉 .

Since ∇γiΨλ(γ) = λ
wi

sinh( λ
wi
γi), we have

δ?i =
−α · sinh( λ

wi
γi)√∑

j w
−1
j sinh2( λ

wj
γj)

.

The following lemma shows that the direction δ? indeed decreases Ψλ. Furthermore, this step
is robust under `∞-perturbation of γ and `2-perturbation of δ?. To avoid the extra difficulties
arising from 0 divided by 0, we replace the sinh by cosh in the denominator.
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Lemma 2.5. Fix any γ ∈ Rm and step size α ∈ [0, 1
8λ

]. Given any γ ∈ Rm with ‖γ − γ‖∞ ≤
wi
8λ
, and step δ satisfying

δi =
−α · sinh( λ

wi
γi)√∑

j w
−1
j cosh2( λ

wj
γj)

+ εi (2.3)

with
√∑

i ε
2
i /wi ≤ α

8
, we have

Ψλ(γ + δ) ≤ Ψλ(γ)− αλ

2

√∑
i

w−1
i cosh2(λ

γi
wi

) + αλ

√∑
i

w−1
i .

Proof. By Taylor expansion, we have

Ψλ(γ + δ) = Ψλ(γ) + 〈∇Ψλ(γ), δ〉+
1

2
δ>∇2Ψλ(γ̃)δ (2.4)

where γ̃ = γ + tδ for some t ∈ [0, 1].

For the first order term in (2.4), note we have

〈∇Ψλ(γ), δ − ε〉 = −αλ
∑

iw
−1
i sinh( λ

wi
γi) sinh( λ

wi
γi)√∑

j w
−1
j cosh2( λ

wj
γj)

.

Using Lemma 2.37 and the assumption |γi − γi| < wi
8λ
, we have

sinh(
λ

wi
γi) sinh(

λ

wi
γi) ≥

6

7
sinh2(

λ

wi
γi)−

1

7

∣∣∣∣sinh(
λ

wi
γi)

∣∣∣∣ .
Combining the above, we get

〈∇Ψλ(γ), δ − ε〉

≤ − 6

7
αλ

∑
iw
−1
i sinh2( λ

wi
γi)√∑

j w
−1
j cosh2( λ

wj
γj)

+
1

7
αλ

∑
iw
−1
i

∣∣∣sinh( λ
wi
γi)
∣∣∣√∑

j w
−1
j cosh2( λ

wj
γj)

≤− 6

7
αλ

∑
iw
−1
i cosh2( λ

wi
γi)√∑

j w
−1
j cosh2( λ

wj
γj)

+
6

7
αλ

∑
iw
−1
i√∑

j w
−1
j cosh2( λ

wj
γj)

+
1

7
αλ

∑
iw
−1
i

∣∣∣sinh( λ
wi
γi)
∣∣∣√∑

j w
−1
j sinh2( λ

wj
γj)

≤− 6

7
αλ

√∑
i

w−1
i cosh2(

λ

wi
γi) + αλ

√∑
i

w−1
i . (2.5)

Using Lemma 2.37 and the assumption |γi − γi| < wi
8λ

again, we have√∑
i

w−1
i cosh2(

λ

wi
γi) ≥

6

7

√∑
i

w−1
i cosh2(

λ

wi
γi).
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Finally, we substitute to get

(2.5) ≤ −36

49
αλ

√∑
i

w−1
i cosh2(

λ

wi
γi) + αλ

√∑
i

w−1
i .

To bound the first order term in (2.4) containing error ε, we have

〈∇Ψλ(γ), ε〉 =
∑
i

λ

wi
sinh(

λ

wi
γi)εi

≤ λ ·
√∑

i

w−1
i sinh2(

λ

wi
γi)

√∑
i

w−1
i ε

2
r

≤ 1

8
αλ

√∑
i

w−1
i cosh2(

λ

wi
γi).

For the second order term in (2.4), first note that

√∑
i

δ2
i /wi ≤

√√√√√∑
i

 α · sinh( λ
wi
γi)√∑

j w
−1
j cosh2( λ

wj
γj)

2

/wi +

√∑
i

ε2
i /wi ≤ α +

α

8
.

In particular, this shows that |δi| ≤ 9α
8

√
wi ≤ 9α

8
wi. Then, we have

δ>∇2Ψλ(γ̃)δ = λ2
∑
i

δ2
i

w2
i

cosh(λ
γ̃i
wi

)

≤ 9α

8
λ2
∑
i

|δi|
wi

cosh(λ
γ̃i
wi

)

≤ 9α

8
λ2

√∑
i

δ2
i /wi ·

√∑
i

w−1
i cosh2(λ

γ̃i
wi

)

≤ (
9α

8
)2λ2

(√∑
i

w−1
i cosh2(λ

γ̃i
wi

)

)

≤ (
9α

8
)2λ2

8

7

√∑
i

w−1
i cosh2(λ

γi
wi

)

 ,

where the last inequality follows from Lemma 2.37.



26

Substituting the bounds on each of the term in (2.4) gives

Ψλ(γ + δ) = Ψλ(γ) + 〈∇Ψλ(γ), δ〉+
1

2
δ>∇2

λ(γ̃)δ

≤ Ψλ(γ)− 36

49
αλ

√∑
i

w−1
i cosh2(λ

γi
wi

) + αλ

√∑
i

w−1
i

+ (
1

8
αλ+

8

7
(
9α

8
)2λ2)

√∑
i

w−1
i cosh2(λ

γi
wi

).

Using α ≤ 1
8λ
, we simplify to get

≤ Ψλ(γ)− αλ

2

√∑
i

w−1
i cosh2(λ

γi
wi

) + αλ

√∑
i

w−1
i ,

as required.

2.2.2 Designing the robust IPM step

In the last section, we discussed how to decrease Ψλ by changing the input γ directly. But our
real potential Φt(x, s) = Ψλ(γ

t(x, s)) is defined indirectly using x, s, and t. In this section,
we discuss how to design the Newton-like step for (x, s) to match a step directly in the input
γ. The definition of some relevant parameters are given in Algorithm 4.

Similar to Section 2.2.1, a natural choice for a gradient descent step on Φ as a function of µ
is in the steepest descent direction:

δ?µ = argmin
‖δµ‖∗x=α

〈∇µΨλ(‖µ‖∗x),µ+ δµ〉, (2.6)

where α denotes the step size.

For any i, we have:

∇‖µ[i]‖∗x[i]
Ψλ(

∥∥µ[i]

∥∥∗
x[i]

) =
λ

wi
sinh

(
λ

wi

∥∥µ[i]

∥∥∗
x[i]

)
and thus

∇µ[i]
Ψλ(‖µi‖∗x[i]

) =
λ sinh( λ

wi

∥∥µ[i]

∥∥∗
x[i]

)

wi
∥∥µ[i]

∥∥∗
x[i]

· ∇φi(x[i])
−1µ[i]

=
λ sinh( λ

wi
γti (x, s))

wiγti (x, s)
· ∇φi(x[i])

−1µ[i].
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Solve (2.6)1, and recalling that µ[i] is a function of x, s, t, we get

δ?µ,[i] = −
α sinh( λ

wi
γti (x, s))

γti (x, s) ·
√∑m

j=1w
−1
j sinh2( λ

wj
γtj(x, s))

· µt[i](x, s).

We will replace sinh by cosh in the denominator as in Lemma 2.5 to avoid issues with dividing
by zero. For notational convenience, define

kti(x, s)
def
=

sinh( λ
wi
γti (x, s))

γti (x, s) ·
√∑m

j=1w
−1
j cosh2( λ

wi
γtj(x, s))

, (2.7)

So that the modified step can be written as

δ′µ,[i] = −α · kti(x, s) · µt[i](x, s).

The central idea in the robust interior point method is to compute δµ,[i] at each step not
as a function of x, s, and t, but instead as a function of their approximations x, s, t. If we
can guarantee that the approximations change in a limited manner across the path following
algorithm, then special data structures can be used to implement more efficient steps.

Hence, the real step in µ taken in the algorithm is given by

δµ,[i]
def
= −α · kti(x, s) · µt[i](x, s), (2.8)

where x, s, t are approximations to x, s, t that we will discuss shortly. They are designed to
match the conditions of Lemma 2.5, which showed that Φ is robust under perturbations in
its input.

Next, we translate the step in µ into the corresponding step in (x, s). To approximately move
µ to µ+ δµ, the corresponding Newton step in (x, s) would be (δ′x, δ

′
s) that satisfies:

1

t
δ′s +∇2φ(x)δ′x = δµ

Aδ′x = 0

A>δ′y + δ′s = 0.

1The derivation of the formula is not used in the main proof as this is just a motivation for the
choice of the step. Therefore, we skip the proof of this. An alternative choice is the gradient step on
minAx=b,A>y+s=c Φt(x, s). This step will be very similar to the step we use in this chapter. But it contains
few more terms and may make the proof longer.
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Using Hx to denote ∇2φ(x), we solve the system above to get

δ′x = H−1
x δµ −H−1

x A>(AH−1
x A>)−1AH−1

x δµ,

δ′s = tA>(AH−1
x A>)−1AH−1

x δµ.

Define Px
def
= H

−1/2
x A>(AH−1

x A>)−1AH
−1/2
x to be the orthogonal projection matrix, then we

can rewrite the step as

δ′x
def
= H−1/2

x (I−Px)H−1/2
x δµ,

δ′s
def
= tH1/2

x PxH
−1/2
x δµ.

Once again, in the spirit of robust interior point methods, we do not want the step in x, s to
depend on x via the Hx and Px terms and on t, but rather, we only want a dependency on
x and t. Hence the real step should be more akin to

δ′′x
def
= H

−1/2
x (I−Px)H

−1/2
x δµ,

δ′′s
def
= tH

1/2
x PxH

−1/2
x δµ.

Finally, we allow for extra error in the step, due to the robust properties of Φ. Instead of
taking the step (δ′′x, δ

′′
s) as defined above, our algorithm will work for any actual (δx, δs)

satisfying

‖δx − δ′′x‖x ≤ εα

‖δs − δ′′s‖
∗
x ≤ εαt.

Expanding out expression, we get the equivalent `2-error conditions∥∥∥H1/2
x δx − (I−Px)H

−1/2
x δµ

∥∥∥
2
≤ εα∥∥∥t−1

H
−1/2
x δs −PxH

−1/2
x δµ

∥∥∥
2
≤ εα.

(2.9)

We define x(new) def
= x+ δx and s(new) def

= s+ δs to be the new primal-dual solution pair after
taking a step.

Next, we turn to the requirements on the approximations x, s, t. As our proofs later will
show, in order to take advantage of the robust guarantees in Φ, it suffices for each i ∈ [m] to
have ∥∥x[i] − x[i]

∥∥
x[i]
≤ ε∥∥s[i] − s[i]

∥∥∗
x[i]
≤ tεwi∣∣t− t∣∣ ≤ εtt,

(2.10)

where εt
def
= ε

4
·mini

(
1

wi+νi

)
.
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2.2.3 Bounding Φ after a step

We have already established Lemma 2.5 for bounding the potential Φ after a step directly on
γ. In this section, we show how to use Lemma 2.5 to bound potential Φ after the true step
on x, s that indirectly moves γ.

Our notation convention is as follows: x, s, t represent the primal and dual solutions and
the duality measure at the start of an iteration; x, s, t represent their approximations;
x(new), s(new), t(new) represent these variables at the end of an iteration, with

x(new) def
= x+ δx, s

(new) def
= s+ δs, and t(new) def

= (1− h)t.

For readability, we omit the dual variable in all function parameters. Furthermore, we use
the notation Hx

def
= ∇2φ(x) and Hx,[i]

def
= ∇2φi(x[i]).

Let

εx
def
= H

1/2
x

(
δx −H

−1/2
x (I−Px)H

−1/2
x δµ

)
εs

def
= t

−1
H
−1/2
x

(
δs − tH1/2

x PxH
−1/2
x δµ

)
denote the error in the step of δx, δs tolerated according to the condition (2.9).

For each i ∈ [m], let ζ[i] be the error vector such that

µt[i](x
(new)) = µt[i](x) + δµ,[i] + ζ[i],

which is once again tolerated according to the condition (2.9). Denote βi
def
=
∥∥ζ[i]

∥∥∗
x[i]

.

First, we bound the step size for each block i.

Lemma 2.6 (Step size of δx and δs). Let αi
def
=
∥∥δx,[i]∥∥x[i]

. Then we have
√∑m

i=1 wiα
2
i ≤ 9

8
α.

In particular, we have αi ≤ 9
8
α.

Similarly, let α′i
def
=
∥∥δs,[i]∥∥∗x[i]

. Then we have
√∑m

i=1 α
′
i
2/wi ≤ 9

8
αt.

Proof. For δx, we have√√√√ m∑
i=1

wiα2
i = ‖δx‖x ≤

∥∥∥(I−Px)H
−1/2
x δµ

∥∥∥
2

+ εα (by choice of δx)

≤
∥∥∥H−1/2

x δµ

∥∥∥
2

+ εα (since (I−P) is an orthogonal projection)

≤ α + εα (by definition of step size)

≤ 9

8
α.[TODO: ε constant] (by definition of ε)



30

Similarly, for δs, we have√√√√ m∑
i=1

α′i
2/wi = ‖δs‖∗x ≤ t

∥∥∥PxH
−1/2
x δµ

∥∥∥
2

+ εαt (by choice of δs)

≤ t
∥∥H−1/2

x δµ
∥∥

2
+ εαt (since P is an orthogonal projection)

≤ (1 + ε)αt (by definition of step size)

≤ 9

8
αt. (by choice of ε and guarantees on t)

Next, we show that µ(new) def
= µt(x(new)) is close to µ+ δµ. That is, the additional error we

allow on δx, δs captured by the term ζ does not affect the goodness of the step in µ.

Lemma 2.7 (Small error on µ). We have ‖ζ‖∗x
def
=
√∑m

i=1 β
2
i /wi ≤ 15εα.

Proof. By the definition established at the start of this section, we have

δµ,[i] =
1

t
δs,[i] + wiHx,[i]δx,[i] −

(
wiHx,[i]

)1/2
(εx + εs). (2.11)

By definition of µ, we have

µt[i](x
(new))

=
s

(new)
[i]

t
+ wi∇φi(x(new))

= µt[i](x) +
1

t
δs,[i] + wi

(
∇φi(x(new))−∇φi(x[i])

)
= µt[i](x) + δµ,[i]

+ wi(∇φi(x(new))−∇φi(x[i])−Hx,[i]δx)︸ ︷︷ ︸
ζ
(1)
[i]

+
(
H

1/2
x (εx + εs)

)
i︸ ︷︷ ︸

ζ
(2)
[i]

+ (
1

t
− 1

t
)δs︸ ︷︷ ︸

ζ
(3)
[i]

, (2.12)

where the last line follows from (2.11). Note that we have ζ[i] = ζ
(1)
[i] + ζ

(2)
[i] + ζ

(3)
[i] , and our

goal is to bound √√√√ m∑
i=1

β2
i /wi = ‖ζ‖∗x ≤

∥∥ζ(1)
∥∥∗
x

+
∥∥ζ(2)

∥∥∗
x

+
∥∥ζ(3)

∥∥∗
x

We proceed by bounding each term separately.
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To bound ζ(1)
[i] , we first define x

(u) def
= ux(new)+(1−u)x, which we use for a trick in simplification

below. Then, we have

ζ
(1)
[i] /wi = ∇φi(x(new)

[i] )−∇φi(x[i])−Hx,[i]δx,[i]

=

∫ 1

0

(
Hx(u),[i] −Hx,[i]

)
δx,[i] du.

Applying Lemma 2.30 with x[i] and x(u), we get(
1−

∥∥∥x(u)
[i] − x[i]

∥∥∥
x[i]

)2

Hx,[i] 4 Hx(u),[i] 4
1(

1−
∥∥∥x(u)

[i] − x[i]

∥∥∥
x[i]

)2 Hx,[i]. (2.13)

To use this inequality, first note that∥∥∥x(u)
[i] − x[i]

∥∥∥
x[i]

≤
∥∥∥x(u)

[i] − x[i]

∥∥∥
x[i]

+
∥∥x[i] − x[i]

∥∥
x[i]

The first term is bounded by u ·
∥∥δx,[i]∥∥x[i]

≤ αi by definition, while the second term is
bounded by ε by the approximation guarantee. Hence,∥∥∥x(u)

[i] − x[i]

∥∥∥
x[i]

≤ αi + ε ≤ 9

8
α + ε ≤ 2ε,

where we used αi ≤ 9
8
α from Lemma 2.6, and 2α ≤ ε. [TODO: ε] Combined with (2.13), we

get
(1− 2ε)2 Hx,[i] 4 Hx(u),[i] 4 (1 + 5ε) Hx,[i]. (2.14)

We also get the following relationships between local norms for any v:

(1− 2ε) ‖v‖x[i]
≤ ‖v‖x[i]

≤ (1 + 2ε) ‖v‖x[i]
,

(1− 2ε) ‖v‖∗x[i]
≤ ‖v‖∗x[i]

≤ (1 + 2ε) ‖v‖∗x[i]
.

(2.15)

Applying (2.14) and noting x = x(u) with u = 0, we get∥∥(Hx(u),[i] −Hx,[i]

)
δx,[i]

∥∥∗
x[i]

=
√
δ>x,[i]

(
Hx(u),[i] −Hx,[i]

)> (
Hx,[i]

)−1 (
Hx(u),[i] −Hx,[i]

)
δx,[i]

≤ (1 + 5ε) · 5ε
√
δ>x,[i]Hx,[i]δx,[i]

≤ 6ε
∥∥δx,[i]∥∥x[i]

= 6εαi.
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Hence, ∥∥∥ζ(1)
[i]

∥∥∥∗
x[i]

≤ wi

∫ 1

0

∥∥(Hx(u),[i] −Hx,[i]

)
δx,[i]

∥∥∗
x[i]

du ≤ 6εwiαi.

Summing over all i, we get√√√√∑
i

(∥∥∥ζ(1)
[i]

∥∥∥∗
x[i]

)2

/wi =
∥∥ζ(1)

∥∥∗
x
≤ 6ε

√∑
i

wiα2
i ≤ 9εα,

where the last step follows from Lemma 2.6.

For the ζ(2) term in (2.12), we have√√√√∑
i

(∥∥∥ζ(2)
[i]

∥∥∥∗
x[i]

)2

/wi =
∥∥ζ(2)

∥∥∗
x

=
∥∥∥H1/2

x (εx + εs)
∥∥∥∗
x

≤ (1 + 5ε)
∥∥∥H1/2

x (εx + εs)
∥∥∥∗
x

≤ 2 ‖εx + εs‖2

≤ 4εα,

where we used ‖εx‖2 ≤ εα and ‖εs‖2 ≤ εα as guaranteed by the algorithm.

Finally, for the ζ(3) term in (2.12), we note that√√√√ m∑
i=1

(∥∥∥ζ(3)
[i]

∥∥∥∗
x[i]

)2

/wi =
∥∥ζ(3)

∥∥∗
x

=

√√√√∑
i

(∥∥∥∥(1

t
− 1

t

)
δs,[i]

∥∥∥∥∗
x[i]

)2

/wi

=
1

t

∣∣∣∣t− tt
∣∣∣∣
√∑

i

(∥∥δs,[i]∥∥∗x[i]

)2

/wi

≤ 1

t

∣∣∣∣t− tt
∣∣∣∣ · 9

8
αt (by Lemma 2.6)

≤ 2εα,

where the final line follows from the guarantee that |t− t| ≤ εtt and εt ≤ ε.

Combining the bounds on the three terms, we have 9εα+ 4εα+ 2εα ≤ 15εα, as required.

Next, we can show that the first condition |γi − γi| ≤ wi
8λ

in Lemma 2.5 holds. In our setting,
γi corresponds to the actual centrality measure γti (x) on block i, while γi corresponds to the
perturbation γti (x) where the centrality is computed for x, t.
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Lemma 2.8. Assume γti (x) ≤ wi for all i ∈ [m]. Then, we have∥∥∥µt[i](x)− µt[i](x)
∥∥∥∗
x[i]

≤ 4εwi, and
∣∣∣γti (x)− γti (x)

∣∣∣ ≤ 6εwi.

Proof. We continue with notation introduced in the proof of Lemma 2.7. For the first result,
by triangle inequality, we have

∥∥∥µt[i](x)− µt[i](x)
∥∥∥∗
x[i]

≤
∥∥∥∥s[i]

t
− si

t

∥∥∥∥∗
x[i]

+ wi
∥∥∇φi(x[i])−∇φi(x[i])

∥∥∗
x[i]

. (2.16)

Note the inconsistency between t and t in the denominator of the first term. To bound it, we
have ∥∥∥∥s[i]

t
−
s[i]

t

∥∥∥∥∗
x[i]

≤
∥∥∥∥s[i]

t
−
s[i]

t

∥∥∥∥∗
x[i]

+
∥∥∥s[i]

t
−
s[i]

t

∥∥∥∗
x[i]

≤ εwi +

(
1− t

t

)∥∥∥s[i]

t

∥∥∥∗
x[i]

(first term by guarantee of s)

≤ εwi +

(
1− t

t

)(
γti (x) + wi

∥∥∇φi(x[i])
∥∥∗
x[i]

)
(by definition of γ)

≤ εwi +

(
t− t
t

)(
wi + 2wi

∥∥∇φi(x[i])
∥∥∗
x[i]

)
(by assumption of lemma, and (2.15))

≤ εwi +

(
t− t
t

)
(wi + 2wi

√
νi) (by definition of self-concordance)

≤ εwi + εtwi(1 + 2
√
νi)

≤ 2εwi. (by definition of εt)

For the second term, we use the same integration trick as in the proof of Lemma 2.7. By
(2.14), we have Hx(u),[i](Hx,[i])

−1Hx(u),[i] 4 (1 + 5ε)2Hx,[i]. Then,

wi
∥∥∇φi(x[i])−∇φi(x[i])

∥∥∗
x[i]

= wi

∥∥∥∥∫ 1

0

Hx(u),[i](x[i] − x[i]) du

∥∥∥∥∗
x[i]

≤ wi

∫ 1

0

∥∥Hx(u),[i]

(
x[i] − x[i]

)∥∥∗
x[i]

du

≤ (1 + 5ε)wi
∥∥x[i] − x[i]

∥∥
x[i]

≤ 2εwi. (by guarantee of x)
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For the second result, we have∣∣∣γti (x)− γti (x)
∣∣∣

=

∣∣∣∣∥∥∥µt[i](x)
∥∥∥∗
x[i]

−
∥∥µt[i](x)

∥∥∗
x[i]

∣∣∣∣ (by definition)

≤
∣∣∣∣∥∥∥µti(x)− µti(x)

∥∥∥∗
x[i]

+
∥∥µti(x)

∥∥∗
x[i]
−
∥∥µti(x)

∥∥∗
x[i]

∣∣∣∣ (by triangle inequality)

≤ 4εwi +
∣∣∣∥∥µti(x)

∥∥∗
x[i]
−
∥∥µti(x)

∥∥∗
x[i]

∣∣∣ (by the first result)

≤ 4εwi + 2
∥∥x[i] − x[i]

∥∥
x[i]
·
∥∥µt[i](x)

∥∥∗
x[i]

(by Lemma 2.30)

= 4εwi + 2ε · γti (x) (by guarantee on x)
≤ 6εwi,

as required.

Next, we show that the change in γt(x) after a Newton step on x is comparable to a step δ
in γ established in Lemma 2.5. We need the following helper lemma to bound some of the
terms.

Lemma 2.9. Suppose that Φt(x) ≤ cosh(λ), then we have

• γti (x) ≤ wi,
• γti (x) ≤ 2wi,
• 0 ≤ kti(x) ≤ λ.

Proof. Recall Φt(x)
def
=
∑m

i=1 cosh
(
λ
γti (x)

wi

)
, so by assumption of the lemma, we have γti (x) ≤

wi for all i.

Lemma 2.8 shows that ∣∣∣γti (x)− γti (x)
∣∣∣ ≤ 6εwi.

Combined with the first inequality, we have γti (x) ≤ 2wi.

For the third inequality, we note that kti ≥ 0 by definition. If γti (x) ≥ wi
λ
, then using the fact

0 ≤ tanh(x) ≤ 1 for all x, we have

kti(x) ≤
wi sinh( λ

wi
γti (x))

γti (x) · cosh( λ
wi
γti (x))

≤ λ.

Alternatively, if γti (x) ≤ wi
λ
, then using the fact |sinh(x)| ≤ 2 |x| for all |x| ≤ 1, we get

kti(x) ≤
2 λ
wi
γti (x)

γti (x) ·
√∑m

j=1 w
−1
j cosh2( λ

wj
γtj(x))

≤ 2λ

wi

√
4
∑m

j=1 w
−1
j

≤ λ.
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Finally, we can bound the distance between the new centrality measure after a Newton step,
γt(x(new)), and the result of a direct gradient step, γ − α · kt(x) ◦ γt(x). Here we crucially
use the fact that sinh(x)/x is bounded at x = 0.

Lemma 2.10 (Change in γ). Assume Φt(x) ≤ cosh(λ). For all i ∈ [m], let

ξi
def
= γti (x

(new))−
(
γti (x)− α · kti(x) · γti (x)

)
.

Then, we have √√√√ m∑
i=1

ξ2
i /wi ≤ 90ελα + 4αmax

i

(
γti (x)

wi

)
.

Proof. For notation simplicity, we write ki
def
= kti(x). To begin, we have

|ξi| =
∣∣∣∣∥∥µt[i](x(new))

∥∥∗
x
(new)
[i]

−
(
γti (x)− α · ki · γti (x)

)∣∣∣∣
≤
∣∣∣∥∥µt[i](x(new))

∥∥∗
x[i]
− γti (x) + αkiγ

t
i (x)

∣∣∣+

∣∣∣∣∥∥µt[i](x(new))
∥∥∗
x
(new)
[i]

−
∥∥µt[i](x(new))

∥∥∗
x[i]

∣∣∣∣
(2.17)

For the first term, we have∥∥µt[i](x(new))
∥∥∗
x[i]

=
∥∥µt[i](x) + δµ,[i] + ζ[i]

∥∥∗
x[i]

≤
∥∥∥µt[i](x)− αkiµt[i](x)

∥∥∥∗
x[i]

+
∥∥ζ[i]

∥∥∗
x[i]

≤ ‖µt[i](x)− αkiµt[i](x)‖∗x[i]
+ αki ·

∥∥∥µt[i](x)− µt[i](x)
∥∥∥∗
x[i]

+
∥∥ζ[i]

∥∥∗
x[i]

= (1− αki)γti (x) + αki ·
∥∥∥µt[i](x)− µt[i](x)

∥∥∥∗
x[i]

+
∥∥ζ[i]

∥∥∗
x[i]

≤ γti (x) + αki ·
∥∥∥µt[i](x)− µt[i](x)

∥∥∥∗
x[i]

+
∥∥ζ[i]

∥∥∗
x[i]

(since 0 ≤ αki ≤ αλ ≤ 1 by Lemma 2.9)

≤ γti (x) + 4αkiεwi + βi, (2.18)

where the last line follows from Lemma 2.8 and definition of βi. Continuing, we have∣∣∣∥∥µt[i](x(new))
∥∥∗
x[i]
− γti (x) + αkiγ

t
i (x)

∣∣∣
≤
∣∣∣γti (x) + 4αkiεwi + βi − γti (x) + αkiγ

t
i (x)

∣∣∣
≤ 4αkiεwi + βi + αkiγ

t
i (x)

≤ 6αkiεwi + βi. (by Lemma 2.9)
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For the second term, we have∣∣∣∣∥∥µt[i](x(new))
∥∥∗
x
(new)
[i]

−
∥∥µt[i](x(new))

∥∥∗
x[i]

∣∣∣∣
≤ 2

∥∥x[i]
(new) − x[i]

∥∥
x[i]
·
∥∥µt[i](x(new))

∥∥∗
x[i]

(by Lemma 2.30)

≤ 3
∥∥δx,[i]∥∥x[i]

·
(
γti (x) + 4αkiεwi + βi

)
(by Eq. (2.18) and Eq. (2.15))

≤ 3αiγ
t
i (x) + 12αkiεwi + 3βi. (by definition of αi)

Returning to the overall bound in (2.17) by combining the two terms, we have

|ξi| ≤ 6αkiεwi + βi + 3αiγ
t
i (x) + 12αkiεwi + 3βi

≤ 18αkiεwi + 3αiγ
t
i (x) + 4βi.

Next, as a helper, note that

m∑
i=1

wik
2

i =

∑m
i=1wi

sinh2( λ
wi
γti (x))

γti (x)2∑m
j=1w

−1
j cosh2( λ

wj
γtj(x))

= λ2

∑m
i=1w

−1
i

w2
i

λ2γti (x)2
sinh2( λ

wi
γti (x))∑m

j=1w
−1
j cosh2( λ

wj
γtj(x))

≤ λ2

∑m
i=1 w

−1
i cosh2( λ

wi
γti (x))∑m

j=1 w
−1
j cosh2( λ

wj
γtj(x))

= λ2.

(2.19)

where we used that sinh2(x)
x2

≤ cosh2(x) for all x for the second last inequality.

Finally, we bound the expression in the lemma statement:√√√√ m∑
i=1

ξ2
i /wi ≤

√√√√ m∑
i=1

(
18αkiεwi

)2
/wi +

√√√√ m∑
i=1

(3αiγti (x))2 /wi +

√√√√ m∑
i=1

(4βi)
2 /wi

= 18αε

√√√√ m∑
i=1

wik
2

i + 3 max

(
γti (x)

wi

)
·

√√√√ m∑
i=1

wiα2
i + 4

√√√√ m∑
i=1

β2
i /wi

≤ 18αλε+ 4αmax
i

(
γti (x)

wi

)
+ 60αε

≤ 90αλε+ 4αmax
i

(
γti (x)

wi

)
,

where we used the helper (2.19), and Lemmas 2.6 and 2.7.
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We are now ready to bound the change of Φ after a Newton step using Lemma 2.5.

Lemma 2.11 (Change of Φ after a Newton step). Assume Φt(x) ≤ cosh(λ/64). Then we
have

Φt(x(new)) ≤ Φt(x)− αλ

2

√√√√ m∑
i=1

w−1
i cosh2

(
λ

wi
γti (x)

)
+ αλ

√∑
i

w−1
i .

Proof. Let γ,γ, δ from Lemma 2.5 be defined as γt(x), γt(x), and γti (x(new))− γti (x) respec-
tively. We verify the conditions are indeed satisfied for these values. First, Lemma 2.8 shows
that |γi − γi| ≤ 6εwi ≤ wi

8λ
.

Lemma 2.10 shows that δi
def
= γti (x

(new))− γti (x) = −α · kti(x) · γti (x) + ξi with√√√√ m∑
i=1

ξ2
i /wi ≤ 90αλε+ 4αmax

i

(
γti (x)

wi

)
≤ 90αλ

1440λ
+

4

64
α (by lemma assumption, |γti (x)| ≤ wi

64
)

≤ α

8
.

Using the definition of kti(x), we have

δi =
−α sinh( λ

wi
γi)√∑m

j=1w
−1
j cosh2( λ

wj
γj)

+ ξi,

so ξ takes the role of ε in Lemma 2.5. Applying Lemma 2.5 gives the claimed conclusion.

Now, we bound the change of Φ after reducing the duality measure t. We first prove a helper
lemma:

Lemma 2.12. We can relate γt(new)

i (x) to γti (x) by

γti (x)− hwi
√
νi ≤ γt

(new)

i (x) ≤ (1 + 2h)γti (x) + 2hwi
√
νi. (2.20)

Moreover, we have

cosh(λγti (x)/wi) ≤ 2 cosh(λγt
(new)

i (x)/wi). (2.21)
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Proof. Applying the definition, we have

γt
(new)

i (x)
def
=
∥∥∥ s[i]

t(new)
+ wi∇φi(x[i])

∥∥∥∗
x[i]

=
1

1− h

∥∥∥s[i]

t
+ (1− h)wi∇φi(x[i])

∥∥∥∗
x[i]

≤ 1

1− h
γti (x) +

h

1− h
wi
∥∥∇φi(x[i])

∥∥∗
x[i]

≤ (1 + 2h)γti (x) + 2hwi
√
νi,

where the last line follows by definition of self-concordance. Similar to the argument for the
upper bound, the lower bound is given by

γt
(new)

i (x) ≥ 1

1− h
γti (x)− h

1− h
wi
∥∥∇φi(x[i])

∥∥∗
x[i]

.

Rearranging, we get

γti (x) ≤ (1− h)γt
(new)

i (x) + hwi
√
νi,

which concludes the first part of the lemma.

We obtain the second part of the lemma by applying Lemma 2.38.

Lemma 2.13 (Change of Φ after reducing t). Assume that Φt(x) ≤ cosh(λ). We have

Φt(new)

(x) ≤ Φt(x) +
αλ

8

√√√√ m∑
i=1

w−1
i cosh2(

λ

wi
γti (x)).

Proof. We have,

Φt(new)

(x)
def
=

m∑
i=1

cosh

(
λ

wi
γt

(new)

i (x)

)
≤

m∑
i=1

cosh

(
λ

wi
γti (x) + 2hλ

(
γti (x)/wi +

√
νi
))

. (by (2.20))

Since Φt(x) ≤ cosh(λ), we know γti (x)/wi ≤ 1; moreover, self-concordance νi is always at
least 1, so

≤
m∑
i=1

cosh

(
λ

wi
γti (x) + 4hλ

√
νi

)
≤ Φt(x) + 8hλ

m∑
i=1

√
νi cosh

(
λ

wi
γti (x)

)
. (by Lemma 2.38)
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Recall h def
= α

64
√∑m

i=1 wiνi
. So we have

≤ Φt(x) +
αλ

8

m∑
i=1

√
νi√∑m

i=1 wiνi
cosh

(
λ

wi
γti (x)

)

≤ Φt(x) +
αλ

8

√√√√ m∑
i=1

w−1
i cosh2(

λ

wi
γti (x)), (by Cauchy-Schwarz)

which is the desired conclusion.

Combining the bound of Φ under a x step (Lemma 2.11) and the bound of Φ under a t step
(Lemma 2.13), we get the bound on Φ after 1 iteration of PathFollowing.

Theorem 2.14. If Φt(x) ≥ cosh( λ
128

), then

Φt(new)

(x(new)) ≤

(
1− αλ

8
√∑

iwi

)
Φt(x) + αλ

√∑
i

w−1
i ≤ Φt(x).

Otherwise, Φt(new)
(x(new)) ≤ cosh

(
λ
64

)
.

Proof. We combine the previous lemmas to get

Φt(new)

(x(new))

≤ Φt(new)

(x)− αλ

2

√√√√ m∑
i=1

w−1
i cosh2(

λ

wi
γt

(new)

i (x)) + αλ

√∑
i

w−1
i (by Lemma 2.11)

≤ Φt(x) +
αλ

8

√√√√ m∑
i=1

w−1
i cosh2(

λ

wi
γti (x))− αλ

4

√√√√ m∑
i=1

w−1
i cosh2(

λ

wi
γti (x)) + αλ

√∑
i

w−1
i

(by Lemma 2.13 on the first term and (2.21) on the second term)

≤ Φt(x)− αλ

8

√√√√ m∑
i=1

w−1
i cosh2(

λ

wi
γti (x)) + αλ

√∑
i

w−1
i

≤ Φt(x)− αλ

8

Φt(x)√∑
iwi

+ αλ

√∑
i

w−1
i . (by Cauchy-Schwarz)

≤ Φt(x) + αλ

(√
m− Φt(x)

8
√
m

)
.

If Φt(x) ≥ cosh( λ
128

), then

Φt(x)

8
√
m
≥

cosh( λ
128

)

8
√
m

≥
exp( λ

128
)

16
√
m

=
exp(1

2
log(256m

∑m
i=1wi))

16
√
m

≥
√
m,
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Hence, Φt(new)
(x(new)) ≤ Φt(x). On the other hand, if Φt(x) ≤ cosh( λ

128
), then recall Φt(x) ≥

m for all x, so

αλ

(√
m− Φt(x)

8
√
m

)
≤ αλ

(√
Φt(x)−

√
Φt(x)

8

)
≤ αλ

8

√
Φt(x) ≤ Φt(x).

It follows that Φt(new)
(x(new)) ≤ 2Φt(x) ≤ 2 cosh( λ

128
) ≤ cosh( λ

64
) by choice of λ.

2.3 Staying far from the boundary

In this section, we show that the solution throughout PathFollowingRobust (Algorithm 4)
is bounded away from the feasible set boundary. While this is not necessary for the proof of
Theorem 2.18, it is a useful helper for the initial point reduction covered in the next section;
is needed to bound the runtime of flow problem data structures covered in future chapters;
and is simply nice to have, for a fuller understanding of the algorithm.

Lemma 2.15. Let x, s be the solution at the end of an iteration of PathFollowingRobust,
and let t denote the duality measure used during the iteration. Without loss of generality,
suppose Φt(x, s) ≤ cosh( λ

64
). For each i ∈ [m], let ηi be the minimum distance between x[i]

and the boundary of Ki, and let η def
= mini ηi. Then

η ≥ rt

128LR + 256κ2t
.

Proof. We will set up an inequality based on some optimality condition of x, and from it
derive the conclusions of the lemma.

Recall P def
= {x : Ax = b, x ∈ K} is the set of feasible solutions. We observe that x is the

minimizer of the function g(v)
def
= 〈c̃,v〉+t·φ(v) over the domain P , where c̃ def

= c−s−t∇φ(x).
Indeed, by definition, we have

∇g(x) = c̃+ t∇φ(x) = c− s = A>y

for some y. Since 〈v,∇g(x)〉 = 〈b,y〉 is constant for all v ∈ P, we conclude ∇g(x) is
orthogonal P and therefore x is optimal.

Define the path between x and z:

p(β)
def
= (1− β) · x+ β · z.
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Consider the directional derivative at x in the direction z − x. Since p(0) minimizes g, we
know d

dβ
g(p(β))|β=0 ≥ 0. In particular,

0 ≤ d

dβ
g(p(β))|β=0 = (c̃+ t∇φ(x))>(z − x).

Note that c̃ = c− tµt(x), and the assumption of the lemma implies that for all i, we have
γti (x)

def
= ‖µt(x)‖∗x[i]

≤ wi
64
. Hence,

0 ≤ (c̃+ t∇φ(x))> (z − x)

= c>(z − x)− t
m∑
i=1

µ>[i](z[i] − x[i]) + t

m∑
i=1

wi∇φi(x)>(z[i] − x[i])

≤ 2LR + t
m∑
i=1

wi
64

∥∥z[i] − x[i]

∥∥
x[i]

+ t
m∑
i=1

wi∇φi(x)>(z[i] − x[i]), (2.22)

where we used ‖c‖2 ≤ L and ‖z − x‖2 ≤ 2R.

To bound the last two terms, let us first fix i ∈ [m], and define φ̃ to be the φi restricted on
the line p containing z[i] and x[i]. Then φ̃ is a νi-self-concordant barrier function on some
interval [α,β], where α and β are two points of ∂Ki uniquely defined by p.

Without loss of generality, suppose the points are ordered α,x[i], z[i],β on the line p, and we
view them in 1 dimension, denoted respectively by α, x, z, β. Then, using Lemma 2.32, we
have

ui
def
=

1

64

∥∥z[i] − x[i]

∥∥
x[i]

+∇φi(x[i])
>(z[i] − x[i])

=
1

64

√
φ̃′′(x) |z − x|+ φ̃′(x)(z − x)

≤ 4ν2
i −

1

64

(
z − α
x− α

)
.

For most i ∈ [m], we simply use the bound ui ≤ 4ν2
i . For the i that attains ηi = η, we use a

tighter bound that includes the second term in the above expression. In the next part, we
refer to said i. Let q def

= argminv∈∂Ki
∥∥v − x[i]

∥∥
2
. Let ` be the line through q and α. Let P be

the projection function of x[i] onto ` so that Px[i] = q, then let z′ def
= Pz[i] be the projection

of z[i] onto `. Since Ki is convex, z′ /∈ Ki. Finally, an argument about similar triangles show∥∥q − x[i]

∥∥
2

‖x−α‖2

=

∥∥z′ − z[i]

∥∥
2

‖z −α‖2

.

Hence,
η

x− α
≥ r

z − α
.
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This gives us the tighter bound ui ≤ 4ν2
i − r

64η
for the i with ηi = η. Substituting back into

(2.22), we conclude

0 ≤ 2LR + t
m∑
i=1

wiui ≤ 2LR + 4t
m∑
i=1

wiν
2
i −

rt

64η
≤ 2LR + 4tκ2 − rt

64η
.

Rearranging gives the claimed result.

Since x approximates x in the local norm, we can also bound the distance from x to the
boundary of K. We omit its proof.

Corollary 2.16. Let x be the approximation of x guaranteed. Then the distance from x to
the boundary of K is also bounded from below with polynomial dependence on t.

2.4 Initial point reduction

Path-following requires an initial point close to the the central path, and in this section, we
discuss how to find such a point.

At a high level, we accomplish this by modifying the given convex program (P) to obtain a
different convex program (P ′T ), for which we know an explicit point on its central path. This
point, however, may not directly translate to a feasible initial solution for (P). Rather, we
will show that if (P ′T ) is sufficiently optimized starting from the known point on its central
path, then that solution does yield a feasible initial point for the original problem.

The intuition for defining (P ′T ) is as follows: To satisfy the constraint x ∈ K, we could
consider solving minx∈K c

>x+ tφ(x) for some parameter t. Since the solution x here may not
satisfy the constraint Ax = b, we instead use variables x(1),x(2),x(3), so that x(1) ∈ K acts
as the original variable and x(2),x(3) ∈ Rn

≥0 are the extra variables, and enforce Ax(new) = b

for x(new) = x(1) + x(2) − x(3). We put a large cost vector on x(2) and x(3) to ensure they are
small in magnitude, so that x(1) could be feasible alone.

Formally, consider a convex program of the form (P). For any T > 0, we define the modified
convex program by

min
(x(1),x(2),x(3))∈P

〈
c(1),x(1)

〉
+
〈
c(2),x(2)

〉
+
〈
c(3),x(3)

〉
(P ′T )
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where

P def
= {x(1) ∈ K, (x(2),x(3)) ∈ R2d

≥0 : A(x(1) + x(2) − x(3)) = b},
c(1) def

= c,

c(2) def
=

T

3R + x◦ − xc
, with xc

def
= argmin

x∈K
c>x+ Tφ(x) and x◦

def
= argmin

Ax=b
‖x− xc‖2 , and

c(3) def
=

T

3R
· 1.

The dual feasible set, given by the dual slack variables, is

D def
= {s(1) ∈ K∗, (s(2), s(3)) ∈ R2d

≥0 :

 A>

A>

−A>

y +

s(1)

s(2)

s(3)

 =

c(1)

c(2)

c(3)

 for some y ∈ Rn}.

To solve (P ′T ), we could run the interior point method. In this case, the corresponding central
path problem is

min
(x(1),x(2),x(3))∈P

ft(x
(1),x(2),x(3)) (2.23)

where the objective function at time t is

ft(x
(1),x(2),x(3))

def
=
〈
c(1),x(1)

〉
+
〈
c(2),x(2)

〉
+
〈
c(3),x(3)

〉
+ tφ(x(1))− t

n∑
i=1

(
logx

(2)
i + logx

(3)
i

)
.

Lemma 2.17. Fix T > 0 for (P ′T ). The point x def
= (xc, 3R + x◦ − xc, 3R) is the minimizer

of (2.23) when t = T , with corresponding dual variables s def
= (−T∇φ(xc),

T
3R+x◦−xc ,

T
3R

).

Proof. We will show that x ∈ P and that it minimizes fT over R3d, not just P .

For the set constraint, we note that x(1) ∈ K and x(3) ≥ 0 by definition. For x(2), we note
that the inner radius guarantees the existence of some z ∈ K with Az = b, and hence
‖x◦−xc‖2 ≤ ‖z − xc‖2 ≤ 2R. It follows that each coordinate of x(2) is at least R, so x(2) ≥ 0.
Hence, (x(1),x(2),x(3)) ∈ P .

For optimality, since x(1) def
= xc = argminx∈K c

>x+ Tφ(x), we have

∇x(1)fT (x) = c(1) + T∇φ(x(1))

= c+ T∇φ(xc)

= 0.
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By definition of c(2) and c(3), we also have ∇x(2)fT (x) = c(2) − T/x(2) = 0, and similarly
∇x(3)fT (x) = 0. Hence x is the minimizer of fT . The dual variables are determined by the
negative of the barrier function gradient.

So we have established an initial point on the central path for the problem (P ′T ). Using this
initial point, we can run the path-following procedure of Algorithm 4, and reduce the central
path parameter t from tstart

def
= T to a smaller value tend. This will in turn give (x?, s?) close

to the minimizer of (2.23) at t = tend. Our main theorem shows that this point suffices as an
initial point for (P).

Theorem 2.18. For any 0 ≤ δ ≤ 1
2
, let T ≥ 216(d + κ)5 · LR

δ
· R
r
. Suppose we run

Algorithm 4 on the convex program (P ′T ) from tstart
def
= T to tend

def
= LR, with initial point

given by Lemma 2.17, and receive primal and dual solutions x? def
= (x(1)?,x(2)?,x(3)?) ∈ P and

s?
def
= (s(1)?, s(2)?, s(3)?) ∈ D that satisfy

Φtend(x?, s?) ≤ cosh(
λ

64
).

Let x(new) = x(1)?+x(2)?−x(3)? and s(new) = s(1)?. Then they satisfy Ax(new) = b, x(new) ∈ K,
A>y + s(new) = c for some y, and for each i ∈ [m],

γtendi

(
x(new), s(new)

)
≤ γtendi

(
x(1)?, s(1)?

)
+ δwi.

Proof. First, by construction, we have Ax(new) = b. Since there exists some y so that
A>y + s(1)? = c, we in turn have A>y + s(new) = c.

The first part of Lemma 2.19 shows that x(1)? is η ≥ r
96(n+κ2)

far from ∂K. The second part
shows x(2)? and x(3)? are small, so that∥∥x(new) − x(1)?

∥∥
2

=
∥∥x(2)? − x(3)?

∥∥
2
≤
∥∥x(2)?

∥∥
1

+
∥∥x(3)?

∥∥
1
≤ 30(d+ κ2) · LR

tstart

·R,

where we also used x(2),x(3) ≥ 0. Hence, by choice of tstart, we have∥∥x(new) − x(1)?
∥∥

2

η
≤ 212(d+ κ)4 · R

r
· LR
tstart

< 1.

In particular, we conclude that x(new) ∈ K.

For the second half of the proof, we bound s(new)/tend +w∇φ(x(new)). The assumption on
the potential Φ translates to

γtendi

(
x(1), s(1)

)
≤ wi

64
for each i ∈ [m], and (2.24)

x
(j)?
i · s(j)?

i ∈
[
1± 1

64

]
tend for each entry i ∈ [n] and j ∈ {2, 3}.
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Lemma 2.32 shows that ∇2φi(x
(1)?
[i] ) 4 9ν2

i /η
2. Then,∥∥∥x(new)

[i] − x(1)?
[i]

∥∥∥
x
(1)?
[i]

≤ 3νi
η
·
∥∥∥x(new)

[i] − x(1)?
[i]

∥∥∥
2

≤ 3νi ·
(

r

384(d+ κ2)

)−1

· 30(n+ κ2) · LR
tstart

·R

≤ 214(d+ κ)5 · LR
tstart

· R
r

(using the fact wi ≥ 1)

≤ δ

4
.

Combined with Lemma 2.30, we have ‖v‖
x
(new)
[i]

≤ (1 + δ
2
) ‖v‖

x
(1)?
[i]

for any v, and moreover,∥∥∥∇φi(x(new)
[i] )−∇φi(x(1)?

[i] )
∥∥∥∗
x
(1)?
[i]

≤ δ
2
. Hence,

γtendi

(
x(new), s(new)

)
def
=

∥∥∥∥∥s
(new)
[i]

tend

+ wi∇φi(x(new)
[i] )

∥∥∥∥∥
∗

x
(new)
[i]

≤
(

1 +
δ

2

)∥∥∥∥∥s
(new)
[i]

tend

+ wi∇φi(x(new)
[i] )

∥∥∥∥∥
∗

x
(1)?
[i]

=

(
1 +

δ

2

)∥∥∥∥∥s
(1)?
[i]

tend

+ wi∇φi(x(1)?
[i] ) + wi

(
∇φi(x(new)

[i] )−∇φi(x(1)?
[i] )

)∥∥∥∥∥
∗

x
(1)?
[i]

≤
(

1 +
δ

2

)∥∥∥∥∥s
(1)?
[i]

tend

+ wi∇φi(x(1)?
[i] )

∥∥∥∥∥
∗

x
(1)?
[i]

+

(
1 +

δ

2

)
wi

∥∥∥∇φi(x(new)
[i] )−∇φi(x(1)?

[i] )
∥∥∥∗
x
(1)?
[i]

≤

∥∥∥∥∥s
(1)?
[i]

tend

+ wi∇φi(x(1)?
[i] )

∥∥∥∥∥
∗

x
(1)?
[i]

+
δ

2
· wi

64
+

(
1 +

δ

2

)
wi ·

δ

2

(by the assumption of the theorem)

≤

∥∥∥∥∥s
(1)?
[i]

tend

+ wi∇φi(x(1)?
[i] )

∥∥∥∥∥
∗

x
(1)?
[i]

+ δwi,

as required.

Lemma 2.19. Let η be the the minimum distance between x(1)? to the boundary of K, i.e.
η

def
= mini∈[m] minq∈∂Ki

∥∥∥q − x(1)?
[i]

∥∥∥
2
. We have

η ≥ r

384(d+ κ2)
and

d∑
i=1

(x
(2)?
i + x

(3)?
i ) ≤ 30(d+ κ2) · LR

tstart

·R.
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Proof. This proof is very similar to the proof of Lemma 2.15. Let P be the set of feasible
primal solutions.

Claim 2.20. x? def
= (x(1)?,x(2)?,x(3)?) is the minimizer of the function

g(x(1),x(2),x(3))
def
=
〈
c̃,x(1)

〉
+
〈
c(2),x(2)

〉
+
〈
c(3),x(3)

〉
+ tend · φ(x(1))−

n∑
i=1

µ
(2)
i logx

(2)
i −

n∑
i=1

µ
(3)
i logx

(3)
i

over the domain P, where c̃ def
= c(1) − s(1)? − tend∇φ(x(1)?), µ(2) def

= x(2)? ◦ s(2)?, and µ(3) def
=

x(3)? ◦ s(3)?.

Proof. By definition, we have

∇x(1)g(x?) = c̃+ tend∇φ(x(1)?) = c(1) − s(1)? = A>y,

∇x(2)g(x?) = c(2) − µ(2)

x(2)?
= c(2) − s(2)? = A>y,

∇x(3)g(x?) = c(3) − µ(3)

x(3)?
= c(3) − s(3)? = −A>y,

for some y. Since 〈x,∇g(x?)〉 = 〈b,y〉 is constant for all x in the affine subspace P, we
conclude ∇g(x?) is orthogonal P and therefore x? is optimal.

Next, we consider the directional derivative at x? in the direction z−x?, where z ∈ K is the
point promised by the definition of inner radius. Since our domain is P ⊂ R3n, we need to
lift z to higher dimension. Define

z(1) def
= z, z(2) = z(3) def

=
tend

tstart

R.

By construction, z ∈ P . Now, we define the path between x? and z:

p(β)
def
= (1− β) · (x(1)?,x(2)?,x(3)?) + β · (z(1), z(2), z(3)).

Since p(0) minimizes g, we know d
dβ
g(p(β))|β=0 ≥ 0. In particular, we have

0 ≤ d

dβ
g(p(β))|β=0 = (c̃+ tend∇φ(x(1)?))>(z(1) − x(1)?)

+
n∑
i=1

(c
(2)
i −

µ
(2)
i

x
(2)?
i

)(z
(2)
i − x

(2)?
i ) +

n∑
i=1

(c
(3)
i −

µ
(3)
i

x
(3)?
i

)(z
(3)
i − x

(3)?
i ).

(2.25)
Now, we bound the terms one by one. Together they will give the conclusion of the lemma.
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Claim 2.21. We have
(
c̃+ tend∇φ(x(1)?)

)>
(z(1) − x(1)?) ≤ (6κ2 − r

64η
)LR.

Proof. Note that c̃ = c(1)− tendµ, where µ[i]
def
= s

(1)?
[i] /tend +∇φ(x

(1)?
[i] ). By the assumption on

(x?, s?), we have
γtend(x(1)?)

def
= ‖µ‖∗

x
(1)?
[i]

≤ wi
64

for all i ∈ [m].

Hence, we have(
c̃+ tend∇φ(x(1)?)

)>
(z(1) − x(1)?)

= c(1)>(z(1) − x(1)?)− tend

m∑
i=1

µ>[i](z
(1)
[i] − x

(1)?
[i] ) + tend

m∑
i=1

wi∇φi(x(1)?)>(z
(1)
[i] − x

(1)?
[i] )

≤ 2LR + tend

m∑
i=1

wi
64

∥∥∥z(1)
[i] − x

(1)?
[i]

∥∥∥
x
(1)?
[i]

+ tend

m∑
i=1

wi∇φi(x(1)?)>(z
(1)
[i] − x

(1)?
[i] ), (2.26)

where we used ‖c(1)‖2 ≤ L and ‖z(1) − x(1)?‖2 ≤ 2R.

The bound on the last two terms are identical to the proof in Lemma 2.15. So we have

(2.26) ≤ 2LR + tend

m∑
i=1

wiui

≤ 2LR + 4tend

m∑
i=1

wiν
2
i −

rtend

64η

≤ 2LR + 4tendκ
2 − rtend

64η
.

Using tend = LR and κ ≥ 1, we have the claim.

Next, we bound the second term and the third term in (2.25).

Claim 2.22. For j = 2 and 3, we have
d∑
i=1

(
c

(j)
i −

µ
(j)
i

x
(j)
i

)
(z

(j)
i − x

(j)
i ) ≤ 3LRd− tstart

5R

d∑
i=1

x
(j)
i .

Proof. We only prove the case j = 2; the proof for j = 3 is similar. As proved in Lemma 2.17,
‖x◦ − xc‖2 ≤ 2R. Hence c(2)

i = T
3R+x◦i−xci

∈ [ tstart
5R

, tstart
R

]. Hence, we have(
c

(2)
i −

µ
(2)
i

x
(2)
i

)
(z

(2)
i − x

(2)
i ) = c

(2)
i z

(2)
i −

µ
(2)
i

x
(2)
i

z
(2)
i − c

(2)
i x

(2)
i + µ

(2)
i

≤ tstart

R
· tend

tstart

R− tstart

5R
· x(2)

i + 2tend

≤ 3tend −
tstart

5R
· x(2)

i .
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Summing over all i and using tend = LR gives the result.

Combining (2.25), Claim 2.21 and Claim 2.22, we have

0 ≤ (6κ2 − r

64η
)LR + 6LRd− tstart

5R

d∑
i=1

(x
(2)?
i + x

(3)?
i ).

Rearranging, we conclude

r

64η
+

tstart

5LR2

n∑
i=1

(x
(2)?
i + x

(3)?
i ) ≤ 6(d+ κ2),

as required.

2.5 Main result statement

We are ready to combine all previous theorems for the overall IPM result.

Theorem 2.23. Suppose we are given the convex program (P). For any 0 < ε ≤ 1/2, there
is an algorithm that outputs an approximate solution x using T def

= O(
√
κ log(m) log(dκR

εr
))

iterations of PathFollowingRobust (Algorithm 4), such that Ax = b, x ∈ K and

c>x ≤ min
Ax=b, x∈K

c>x+ εLR.

Proof. The algorithm consists of running PathFollowingRobust twice. The first run is
on the problem (P ′T ) from tstart = 216(d+ κ)5 · LR

δ
· R
r
to tend = LR with δ = 1

128
, with initial

point given by Lemma 2.17. Since the initial point is known to be on the central path, its
potential is indeed bounded, hence the potential is at most cosh( λ

64
) throughout the first run

by Theorem 2.4. Let x?, s? denote the output. Theorem 2.18 shows that we have x(init), s(init)

at t = LR feasible for (P), satisfying

γti (x
(init), s(init)) ≤ γti (x(1)?, s(1)?) +

wi
128



49

for each i ∈ [m]. It follows that

Φt(x(init), s(init))
def
=
∑
i

cosh

(
λ

wi
γti (x

(init), s(init))

)
≤
∑
i

cosh

(
λ

wi
γti (x

(1)?, s(1)?) +
λ

128

)
≤ (1 +

λ

64
)Φ(x?, s?) (by Lemma 2.38)

≤ (1 +
λ

64
) cosh(

λ

64
)

≤ cosh(
λ

32
)

by choice of λ. The second run of PathFollowingRobust is on (P) from tstart = LR to
tend = εLR

3κ
. Let x(final), s(final) denote the output of the second run. Theorem 2.14 shows that

the solution is feasible and the potential Φ is bounded by cosh( λ
32

) throughout. Hence, for
each i ∈ [m], we have γtendi (x(final), s(final)) ≤ wi

32
. By Lemma 2.3, we conclude

c>x(final) ≤ min
Ax=b, x∈K

c>x+ 3tκLR ≤ min
Ax=b, x∈K

c>x+ εLR.

Now we compute the total number of steps T to reduce t from 216(d+ κ)5 · LR
δ
· R
r
to εLR

3κ
over

the two runs. Recall each iteration of the algorithm reduces t by a factor of (1− h) where
h

def
= α

64
√
κ
. Hence,

T = O

(
1

h
log

(
tstart

tend

))
= O

(√
κ logm log

(
dκR

εr

))
,

as required.

2.6 Path following for linear programs

For completeness, we simplify PathFollowingRobust (Algorithm 4) to apply to linear
programs of the form

min c>x

s.t. Ax = b

l ≤ x ≤ u
(LP)

where A is a n×m matrix.

Theorem 2.24. Consider (LP). We are given a scalar r > 0 such that there exists some
interior point x◦ satisfying Ax◦ = b and l+ r ≤ x◦ ≤ u− r. Let L = ‖c‖2 and R = ‖u− l‖2.
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For any 0 < ε ≤ 1/2, the algorithm PathFollowingLP (Algorithm 5) finds x such that
Ax = b, l ≤ x ≤ u and

c>x ≤ min
Ax=b, l≤x≤u

c>x+ εLR.

Furthermore, the algorithm has the following properties:

• Each call of PathFollowingLP involves O(
√
m logm log(mR

εr
))-many steps, and t is

only updated O(logm log(mR
εr

))-many times.

• In each step of PathFollowingLP, the coordinate i in W and v changes only if xi
or si changes.

• In each step of PathFollowingLP, ‖v‖2 = O( 1
logm

).

Proof. We set wi = νi = 1 for all i in Algorithm 4. Each block [i] now references the single
coordinate i. From Eq. (2.8) and Definition 2.2, we have

δµ,i
def
= −α · kti(x, s) · µti(x, s)

= −α · sinh(λγti (x, s))√∑m
j=1 cosh2(λγtj(x, s))

· µ
t
i(x, s)

γti (x, s)

= −α · sinh(λγti (x, s))

‖ cosh(λγt(x, s))‖2

·H1/2
x,i .

Next, recall the requirements of δx and δs in Algorithm 4, which are Aδx = 0, δs ∈
Range(A>), and ∥∥∥H1/2

x

(
δx −H

−1/2
x (I−Px)H

−1/2
x δµ

)∥∥∥
2
≤ εα,∥∥∥H−1/2

x

(
δs − tH1/2

x PxH
−1/2
x δµ

)∥∥∥
2
≤ εαt.

Let v def
= H

−1/2
x δµ. For reasons that will become clear in subsequent chapters, let W

def
= H−1

x .
Then, it is equivalent to find v⊥ and v‖ satisfying AW1/2v⊥ = 0, W−1/2v‖ ∈ Range(A>),
and ∥∥v⊥ − (I−Px)v

∥∥
2
≤ εα,∥∥v‖ −Pxv

∥∥
2
≤ εα;

(2.27)

then we can set δx = W1/2v⊥ and δs = tW−1/2v‖ for the correct updates.

The bound on ‖v‖2 follows from

‖v‖2 ≤ α
‖ sinh(λγt(x, s))‖2

‖ cosh(λγt(x, s))‖2

≤ α = O

(
1

logm

)
.

As a result, we can relax the right-hand side of (2.27) to ε ‖v‖2.
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Algorithm 5 PathFollowingRobust applied to linear programs

Definition of parameters:

λ
def
= 64 log(256m2), ε

def
=

1

1440λ
, α

def
=
ε

2
, εt

def
=
ε

8
,

h
def
=

α

64
√
m
,

W
def
= H−1

x ,

vi
def
= −α · sinh(λγti (x, s))

‖ cosh(λγti (x, s))‖2

for each i ∈ [m]

1: procedure PathFollowingLP(A, φ,w,x(init), s(init), tstart, tend)
2: (x, s, t)← (x(init), s(init), tstart)

3: (x, s, t)← (x, s, t)

4: while t ≥ tend do
5: Update diagonal matrix W computed at x
6: Update the direction v
7: Pick v⊥ and v‖ such that Av⊥ = 0, v‖ ∈ Range(A>), and

‖v⊥ − (I−Px)v‖2 ≤ ε‖v‖2,

‖v‖ −Pxv‖2 ≤ ε‖v‖2.

. Px
def
= W1/2A>(AWA>)−1AW1/2

8: f ← f + W1/2v⊥, s← s+ tW−1/2v‖

9: update x, s to satisfy x ∈ (l,u), s > 0, and

‖W−1/2(x− x)‖∞ ≤ ε,

‖W1/2(s− s)‖∞ ≤ tε

10: t← (1− h) · t
11: update t to satisfy |t− t| ≤ εt · t
12: end while
13: return (x, s)

14: end procedure
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2.7 One scheme for solution approximations

As discussed in Eq. (2.10), every iteration of our path following algorithm uses approximate
solutions x, s to compute the subsequent Newton step. In this section, we present one scheme
for computing these approximations. At a high level, the scheme begins with x, s being equal
to the exact solution x, s, and as x, s is updated, x, s is lazily updated on individual blocks
to the latest exact values when the approximation guarantee is violated. Lazy updating is
crucial for the implementation of our efficient data structures in later chapters.

Recall the approximation guarantees as specified by PathFollowingRobust(Algorithm 4):
At every iteration, x, s satisfy, for each i ∈ [m],∥∥∥Hx[i]

(x[i] − x[i])
∥∥∥

2
≤ ε∥∥∥H−1

x[i]
(s[i] − s[i])

∥∥∥
2
≤ tεwi.

For simplicity, we assume all blocks are one-dimensional in this section; these results are
generalizable back to blocks in a straightforward way. Our task is then the following: Let x
be the solution throughout PathFollowingRobust. We want to determine x at every
iteration, so that

‖D(x− x)‖∞ ≤ δ

is always satisfied at the end of an iteration, where δ is a constant error tolerance, and D is a
diagonal scaling matrix that is a fixed entrywise function of x. We omit the problem for dual
variables, which is analogous.

We refer to the k-th iteration of one run of PathFollowingRobust(Algorithm 4) as
the k-th step. The values of x,x,D at the end of the step are denoted by x(k),x(k),D(k)

respectively.

In our scheme, we make clever use of dyadic intervals. At step k, for each ` such that
k ≡ 0 mod 2`, we find the index set I(k)

` that contains all coordinates i of x such that x(k)
i

changed significantly compared to x(k−2`)
i , that is, compared to 2` steps ago. Formally:

Definition 2.25. At step k of the IPM, for each ` such that k ≡ 0 mod 2`, we define

I
(k)
`

def
= {i ∈ [m] : D

(k−1)
ii · |x(k)

i − x
(k−2`)
i | ≥ δ

2 dlogme
,

and xi has not been updated after the (k − 2`)-th step}.

The main theorem for this section shows that our lazy-updating scheme is correct, and that
the problem is reduced to finding heavy hitters in x.
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Theorem 2.26 (Approximation scheme). Suppose FindLargeCoordinates(`) is a proce-
dure that correctly computes the set I(k)

` at the k-th step. Then AbstractSolutionApprox-
imation (Algorithm 6) maintains an approximation x of x throughout PathFollowingLP
where D is a diagonal scaling matrix that is a fixed entrywise function of x.

• Step(x(new)): Increment the step counter and update x,D such that ‖D(x−x)‖∞ ≤ δ

using all the latest values.

Suppose ‖D(k−1)(x(k) − x(k−1))‖2 ≤ β for all steps k. Then, O(22`(β/δ)2 log2m) coordinates
of x are updated every 2` steps for each ` ≥ 0.

Algorithm 6 AbstractSolutionApproximation
1: . Assume D is a fixed function of x entrywise
2: δ > 0: additive approximation error
3: k: current step
4: x ∈ Rm: current valid approximate vector
5: {x(j) ∈ Rm}kj=0: list of previous inputs
6: {D(j) ∈ Rm×m}kj=0: list of previous diagonal scaling matrices

7: procedure Step(x(new))
8: Increment step counter k
9: I ← ∅

10: for all 0 ≤ ` < dlogme such that k ≡ 0 mod 2` do
11: I

(k)
` ← FindLargeCoordinates(`)

12: I ← I ∪ I(k)
`

13: end for
14: if k ≡ 0 mod 2dlogme then
15: I ← [m] . Update x in full every 2dlogme steps
16: end if
17: xi ← x

(k)
i for all i ∈ I

18: x(k) ← x(new)

19: D(k) ← D(k−1), then update D
(k)
ii as a function of xi for all i ∈ I

20: end procedure

Proof. First we prove the correctness of Step. Fix some step k. Suppose for coordinate i,
the latest update to xi is xi ← x

(k′)
i at step k′. So D

(k′′)
ii is the same for all k′′ ∈ (k′, k], and i

is not in the set I(k′′)
` returned by FindLargeCoordinates for all k′′ ∈ (k′, k]. Since we

set x← x every 2dlogme steps, we know k − 2dlogme ≤ k′ < k. Using dyadic intervals, we can
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define a sequence k0, k1, . . . , ks with s ≤ 2 dlogme, where k′ = k0 < k1 < k2 < · · · < ks = k,
each kj+1 − kj is a power of 2, and (kj+1 − kj) is increasing in j. Hence, we have

x
(k)
i − x

(k)
i = x

(ks)
i − x(k0)

i = x
(ks)
i − x(k0)

i =
s−1∑
j=0

(
x

(kj+1)
i − x(kj)

i

)
.

Since i was not in I(k)
` returned by FindLargeCoordinates for all kj with 0 ≤ j < s, we

have
δ

2 dlogme
≥ D

(kj+1−1)
ii · |x(kj+1)

i − x(kj)
i |.

Since Dii has not changed since iteration k′, summing over all j = 0, 1, . . . , s − 1 and
simplifying gives

D
(k)
ii · |x

(k)
i − x

(k)
i | ≤ δ.

Hence, we have ‖D(x− x)‖∞ ≤ δ.

To prove the number of coordinate changes, again fix step k, and fix some ` with k ≡ 0 mod 2`.
We bound the number of coordinates in I(k)

` . For any i ∈ I(k)
` , we know D

(j)
ii = D

(k)
ii for all

j > k − 2` because xi did not change in the meanwhile. By definition of I(k)
` , we have

D
(k)
ii ·

k−1∑
j=k−2`

|x(j+1)
i − x(j)

i | ≥ D
(k)
ii · |x

(k)
i − x

(k−2`)
i | ≥ δ

2 dlogme
.

Using D
(j)
ii = D

(k)
ii for all j > k − 2` again, the above inequality yields

δ

2 dlogme
≤

k−1∑
j=k−2`

D
(j)
ii |x

(j+1)
i − x(j)

i |

≤

√√√√2`
k−1∑

j=k−2`

D
(j)
ii

2
|x(j+1)

i − x(j)
i |2. (by Cauchy-Schwarz)

Squaring and summing over all i ∈ I(k)
` gives

Ω

(
2−`δ2

log2m

)
|I(k)
` | ≤

∑
i∈I(k)`

k−1∑
j=k−2`

D
(j)
ii

2
|x(j+1)

i − x(j)
i |2

≤
m∑
i=1

k−1∑
j=k−2`

D
(j)
ii

2
|x(j+1)

i − x(j)
i |2

≤ 2`β2,
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where we use ‖D(j)(x(j+1) − x(j))‖2 ≤ β at the end. Hence, we have

|I(k)
` | = O(22`(β/δ)2 log2m).

In other words, for each ` ≥ 0, we update |I(k)
` |-many coordinates of x at step k when k ≡ 0

mod 2`. So we conclude that for each ` ≥ 0, we update O(22`(β/δ)2 log2m)-many coordinates
of x every 2` steps.

Appendix

2.A Self-concordant barrier functions

Here, we provide some relevant definitions and properties of self-concordant barrier functions
used in our IPM proofs.

Definition 2.27 ([133]). A function φ is a ν-self-concordant barrier for a non-empty open
convex set K if dom φ = K, φ(x)→ +∞ as x→ ∂K, and for any x ∈ K and u ∈ Rn,

D3φ(x)[u,u,u] ≤ 2 ‖u‖∇2φ(x) and ‖∇φ(x)‖(∇2φ(x))−1 ≤
√
ν.

A function φ is a self-concordant barrier if the first inequality holds.

For many convex sets, we have an explicit barrier with ν = O(n). For the case of linear
programs, the convex set Ki is simply the feasible interval [`i, ui] for each variable xi, and
one can use the log barrier φ(x) = − log(ui − x)− log(x− `i) with self-concordance 1.

We sometimes use the fact that ν ≥ 1 to simplify formulas.

Lemma 2.28 ([133, Corollary 4.3.1]). The self-concordance ν is at least 1 for any barrier
function.

The following lemma about self-concordance implies when the input x is not changing rapidly,
then the Hessian is also well-approximated.

Lemma 2.29 ([133, Theorems 5.3.7]). Let φ be a ν-self-concordant barrier. For any x,y ∈
dom φ, we have

〈∇φ(x),y − x〉 ≤ ν, and

〈∇φ(y)−∇φ(x),y − x〉 ≥ ‖y − x‖2
x

1 + ‖y − x‖x
.

Lemma 2.30 ([133, Theorem 5.3.4]). Let φ be a self-concordant barrier. For any x ∈ dom φ

and any y ∈ dom φ such that ‖y − x‖x < 1, we have

(1− ‖y − x‖x)2∇2φ(x) 4 ∇2φ(y) 4
1

(1− ‖y − x‖x)2∇
2φ(x).
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Lemma 2.31 ([133, Theorems 5.3.8]). Let φ be a ν-self-concordant barrier. For any x,y ∈
dom φ, with ∇φ(x)>(y − x) ≥ 0, then ‖y − x‖x ≤ ν + 2

√
ν. In particular, for x∗ =

argminx φ(x), we have

{x : ‖x− x∗‖x∗ ≤ 1} ⊂ dom φ ⊂ {x : ‖x− x∗‖x∗ ≤ ν + 2
√
ν}.

Lemma 2.32. Suppose φ is a ν-self-concordant for the interval [α, β]. For any x, z ∈ (α, β),
we have that √

φ′′(x) ≤ 3ν

min {x− α, β − x}
and

φ′(x)(z − x) +
1

16

√
φ′′(x)|z − x| ≤ 4ν2 − 1

16
max

{
z − α
x− α

,
β − z
β − x

}
.

Proof. For the first inequality, we bound φ′′ in two cases: If φ′(x) ≥ 0, then φ′(x)(x− α) ≥ 0

and Lemma 2.31 shows that |α− x|
√
φ′′(x) ≤ ν + 2

√
ν ≤ 3ν. Hence, we have

√
φ′′(x) ≤ 3ν

x−α .
If φ′(x) ≤ 0, a similar argument shows that

√
φ′′(x) ≤ 3ν

β−x .

For the second inequality, we split into four cases. First, we note that both sides of the
inequality are invariant under affine transformation. Hence, we can assume α = 0 and β = 1.

Case 1: φ′(x)(z − x) ≥ 0. Lemma 2.31 shows that√
φ′′(x)|z − x| ≤ ν + 2

√
ν ≤ 3ν.

Together with the fact that |φ′(x)| ≤
√
νφ′′(x), we have

φ′(x)(z − x) +
1

16

√
φ′′(x)|z − x| ≤ 2ν2.

Case 2: x ∈ [ 1
12ν
, 1− 1

12ν
].

Since φ′(x)(z − x) ≤ 0 and z, x ∈ [0, 1], we have

φ′(x)(z − x) +
1

16

√
φ′′(x)|z − x| ≤ 1

16

√
φ′′(x) ≤ 1

16
· 36ν2 = 3ν2,

where we used the first result at the end.

Case 3: x ≤ 1
12ν

.

Let x∗ = arg minx∈[0,1] φ(x). Lemma 2.31 shows that there is an interval I = [−γ, γ]

such that
x∗ + I ⊂ [0, 1] ⊂ x∗ + (ν + 2

√
ν)I ⊂ x∗ + 3νI.
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In particular, this implies that x∗ ∈ [ 1
6ν
, 1 − 1

6ν
]. Since x ≤ 1

12ν
, we have that

x ≤ x∗ − x.

Now we use this to show φ′(x) ≤ −1
8

√
φ′′(x). Note that

φ′(x) = φ′(x∗)−
∫ x∗

x

φ′′(t)dt = −
∫ x∗

x

φ′′(t)dt.

Lemma 2.30 shows that
[
x− 1√

φ′′(x)
, x+ 1√

φ′′(x)

]
⊂ dom φ. In particular, this

implies that
1√
φ′′(x)

≤ x ≤ x∗ − x, (2.28)

and hence x∗ ≥ x+ 1√
φ′′(x)

. Hence, we have

φ′(x) ≤ −
∫ x+(φ′′(x))−1/2/2

x

φ′′(t)dt

≤ −1

4
φ′′(x) · (φ′′(x))−1/2

2

= −1

8

√
φ′′(x),

where we used φ′′(t) ≥ 1
4
φ′′(x) for all |t− x| ≤ 1

2
√
φ′′(x)

as given by Lemma 2.30.

Since φ′(x)(z − x) ≤ 0 and φ′(x) ≤ 0, we have z ≥ x and

φ′(x)(z − x) +
1

16

√
φ′′(x)(z − x) ≤ − 1

16

√
φ′′(x)(z − x)

≤ −z − x
16x

=
1

16
− z

16x

where we used x ≥ 1√
φ′′(x)

from (2.28) at the end.

Case 4: x ≥ 1− 1
12ν

.

By the same argument as case 3, we have φ′(x)(z−x)+ 1
16

√
φ′′(x)(z−x) ≤ 1

16
− 1−z

16(1−x)
.

Combining all the cases, we have the result.

2.B Using the universal barrier

If the barrier function φi for Ki is not given, we can use wi = 1 and the universal barrier for
Algorithm 4 [134, 119]. In this case, the algorithm takes O(

√
n log n log(nκR

εr
)) steps, and the
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cost of computing a good enough approximation of ∇φi and ∇2φi both takes nO(1)
i log(nR

r
)

time for each i, assuming the following mild conditions:

1. We can check if any x[i] is in Ki in n
O(1)
i time.

2. We are given z[i] such that B(z[i], r) ⊂ Ki.

We briefly outline the technical details in this appendix section.

Definition 2.33. For any convex set K ⊂ Rn and point x ∈ K, the polar set of K at x is
given by

K◦(x) = {y ∈ Rn : y>(z − x) ≤ 1,∀z ∈ K}.

We further use vol(K) to denote the volume of K, µ(K) to denote its center of gravity, and
Cov(K) to denote its covariance matrix.

Theorem 2.34 ([134, 119]). For any convex set K ⊂ Rn, the universal barrier function
φ(x)

def
= log vol(K◦(x)) is a n-self-concordant barrier.

The gradient and Hessian of the universal barrier function φ can be computed using the
center of gravity and the covariance of K◦(x).

Lemma 2.35 ([119, Lemma 1]). For any convex set K ⊂ Rn and any x ∈ int(K), we have

∇φ(x) = −(n+ 1)µ(K◦(x)),

∇2φ(x) = (n+ 1)(n+ 2)Cov(K◦(x)) + (n+ 1)µ(K◦(x))µ(K◦(x))>.

Computing center of gravity and covariance takes polynomial time. See for example [118] for
a survey.

Theorem 2.36 ([64, 155]). Suppose we are given a membership oracle for a convex set
K ⊂ Rn with cost T . Assuming B(0, r) ⊂ K ⊂ B(0, R), we can compute x and Σ such that

‖x− µ(K)‖Cov(K)−1 ≤ ε and (1− ε)Σ 4 Cov(K) 4 (1 + ε)Σ

in O
(
nO(1) · T · log(R/r)/ε2

)
time.

Next, note that the membership oracle of K◦(x) involves optimizing one linear function over
the convex set K and can be implemented using a membership oracle of K and the ellipsoid
method. Therefore, for any x, we can compute an approximate gradient g and approximate
Hessian H of the universal barrier function such that

‖g −∇φ(x)‖∇2φ(x)−1 ≤ ε and (1− ε)H 4 ∇2φ(x) 4 (1 + ε)H

in O(nO(1) · T · log(R/r)/ε2) time.
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Finally, we note that as long as ε ≤ 1
logcm

for some large enough constant c, our robust interior
point method works for these approximate gradient and Hessian with the same guarantee.
Since the proof is analogous, we skip the analysis here. Most commonly used convex sets
have known explicit barrier functions with good self-concordance, for which we do not need
heavy machinery like the above.

2.C Hyperbolic function lemmas

Lemma 2.37. For any x, y ∈ R with |y| ≤ 1
8
, we have

| sinh(x+ y)− sinh(x)| ≤ 1

7
| sinh(x)|+ 1

7

| cosh(x+ y)− cosh(x)| ≤ 1

7
cosh(x).

Proof. Note that sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y). Using that
∣∣ |cosh(x)| −

|sinh(x)|
∣∣ ≤ 1, we have

| sinh(x+ y)− sinh(x)| ≤ | sinh(x)| · | cosh(y)− 1|+ cosh(x) sinh(y)

≤ | sinh(x)| ·
(
| cosh(y)− 1|+ | sinh(y)|

)
+ | sinh(y)|

The first result follows from this and | cosh(y)− 1|+ | sinh(y)| ≤ 1
7
for |y| ≤ 1

8
.

For the second result, note that cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y). Hence,

|cosh(x+ y)− cosh(x)| ≤ (cosh(y)− 1) cosh(x) + sinh(x) sinh(y)

≤
(

cosh(y)− 1 + | sinh(y)|
)
· cosh(x)

≤ 1

7
cosh(x).

Lemma 2.38. For any x ≥ 0 and 0 ≤ y ≤ 1, we have cosh(x+ y) ≤ (1 + 2y) cosh(x).

Proof. Note that cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y) and exp(x) = sinh(x) +

cosh(x). Then we have

cosh(x+ y) = cosh(x) [exp(y)− sinh(y)] + sinh(x) sinh(y)

≤ cosh(x) [exp(y)− sinh(y)] + cosh(x) sinh(y)

= cosh(x)exp(y)

≤ cosh(x) + 2y cosh(x),

where we use exp(y) ≤ 1 + 2y for 0 ≤ y ≤ 1.
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Chapter 3

Matrices, graphs, and their decompositions

To design efficient data structures for PathFollowingRobust (Algorithm 4), we leverage
problem-specific structure in the constraint of (P). In this chapter, we establish the necessary
background for discussing structures in matrices and graphs.

3.1 Graph of a matrix

A widely-used method for identifying structures in a sparse matrix A involves associating a
graph with its non-zero pattern, which captures the interactions between the equations in
the system. We introduce one such graph:

Definition 3.1 (Dual graph). The dual graph GA of a constraint matrix A ∈ Rn×m to be
the hypergraph with vertex set {1, . . . , n} corresponding to the rows of A and hyperedges
{e1, . . . , em}, such that vertex i is in hyperedge ej if Ai,j 6= 0. Equivalently, a hyperedge on
the vertex set S ⊆ V can be thought of as a clique on S in a regular graph.

Example 3.2. Consider the matrix

A
def
=


3 1 0 0 4

0 1 5 9 0

2 0 6 5 3

5 0 0 8 9

 ∈ R4×5.

Its dual graph has 4 vertices and 5 hyperedges, with each hyperedge corresponding to one
column of A.
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1 2

3 4

Figure 3.1: The dual graph GA. Hyperedges are identifiable by color, for example, column 4
is colored pink, and is indicated by the pink triangle on vertices 2,3,4.

The definition of the dual graph is motivated by flow problems. Recall the linear constraint
for a problem is of the form B>f = d, where B ∈ Rm×n is the edge-vertex incidence matrix
of the input graph, d is the demand to be routed, and f is the flow we want to compute.
Viewing B as a standalone constraint matrix, we can associate a dual graph with it. It turns
out (by design) the dual graph of B is precisely the input graph.

In the following sections, we discuss structural properties that can be found in these dual
graphs.

3.2 Treewidth and separability

Definition 3.3. A tree-decomposition of a graph G is a pair (X,T ), where T is a tree, and
X : V (T ) 7→ 2V (G) is a family of subsets of V (G) called bags labelling the vertices of T , such
that

1.
⋃
t∈V (T ) X(t) = V (G),

2. for each v ∈ V (G), the nodes t ∈ V (T ) with v ∈ X(t) induces a connected subgraph of
T , and

3. for each e = uv ∈ V (G), there is a node t ∈ V (T ) such that u, v ∈ X(t).

The width of a tree-decomposition (X,T ) is max{|X(t)| − 1 : t ∈ T}. The treewidth of G is
the minimum width over all tree-decompositions of G. Intuitively, the treewidth of a graph
captures how close the graph is to being a tree.

The following structural results about treewidth are elementary.

Lemma 3.4. If G is a graph on n vertices and tw(G) = τ , then |E(G)| ≤ nτ .
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Lemma 3.5. If G′ is a subgraph of G, then tw(G′) ≤ tw(G).

Lemma 3.6. For the complete graph on k vertices, tw(Kk) = k − 1.

There are some basic relations between the sparsity of a matrix A and the treewidth of its
dual graph:

Lemma 3.7. Any column of A with sparsity τ induces a clique of size τ in GA. Hence,
tw(A) is lower bounded by the max number of nonzeros in a column of A.

Treewidth is a natural structural parameter of a graph, with close connections to graph
algorithms of a recursive nature. At a high level, it is generalized by the notion of well-separable
graphs. We are particularly interested in its connection to vertex separators.

Definition 3.8. Let G = (V,E) be a graph. For any W ⊆ V and 1/2 ≤ α < 1, an α-vertex
separator of W is a set S ⊆ V of vertices such that every connected component of the graph
G[V − S] contains at most α · |W | vertices of W . In the particular case when W = V , we
call the separator an α-vertex separator of G. The separator number of G is the maximum
over all subsets W of V of the size of the smallest 1/2-vertex separator of W in G.

We sometimes denote an α-vertex separator S by (G1, S,G2), where V (G1)∪S∪V (G2) = V (G),
and G1 and G2 are disconnected in G \ S.

Similar to treewidth, separator numbers are monotone.

Lemma 3.9. Let G′ be a subgraph of G. For any constant 1/2 ≤ α < 1, the size of the
smallest α-vertex separator of G′ is at most that of G.

The following theorem relates the treewidth of a graph and the separator number.

Theorem 3.10 ([24], Lemma 6). If G is a graph with treewidth τ , then there exists a
1/2-balanced separator of G of size at most τ + 1.

Generalizing vertex separators, we have the concept of (recursively-)separable graphs.

Definition 3.11 (Separable graphs). A subgraph-closed class C of (hyper-)graphs is said
to be α-separable for some α ∈ [0, 1], if there exists universal constants b ∈ (0, 1) and c > 0,
such that for any G = (V, E) ∈ C, the vertices of G can be partitioned into S, A and B such
that |S| ≤ c · |V |α, there are no edges between A and B, and |A|, |B| ≤ b|V |. We call S the
(b-)balanced vertex separator of H.

A notable case is α = 1/2, which includes the family of planar and bounded-genus graphs [123].
It has also been empirically observed that road networks have separators of size n1/3[54,
147].
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Observe that separable graphs are recursively separable, with the balanced separator at each
recursion level decreasing geometrically in size. Bounded-treewidth graphs are recursively
separable as well, however, the balanced seaprators at each recursion level is only guaranteed
to be bounded by the treewidth. The next section defines the notion of a separator tree to
capture both cases.

3.3 Separator tree

Our technical contribution in this section is the definition of a fine-grained separator tree
which we call the (a, b, λ)-separator tree. The parameters are defined based on the parameters
of separable graphs, but they also capture important characteristics of other classes such
as low-treewidth graphs. These trees guarantee that at any node, we are able to separate
not only the associated graph region, but also the boundary of the region. We use them
to maintain the tree operators from the implicit representations, and a careful analysis of
node and boundary sizes allows us to conclude that the maintenance can be performed
efficiently.

The notion of using a separator tree to represent the recursive decomposition of a separa-
ble graph is well-established in literature, c.f [67, 87]. In our work, we use the following
definition:

Definition 3.12 (Separator tree). Let G be a hypergraph with n vertices, m hyperedges,
and max hyperedge size ρ. A separator tree S for G is a constant-degree tree whose nodes
represent a recursive decomposition of G based on balanced separators.

Formally, each node of S is a region (edge-induced subgraph) H of G; we denote this by
H ∈ S. At a node H, we define subsets of vertices ∂H, S(H), FH , where ∂H is the set of
boundary vertices of H, i.e. vertices with neighbours outside H in G; S(H) is a balanced
vertex separator of H; and FH is the set of eliminated vertices at H. Furthermore, let E(H)

denote the edges contained in H.

The nodes and associated vertex sets are defined in a top-down manner as follows:

1. The root of S is the node H = G, with ∂H = ∅ and FH = S(H).
2. A non-leaf node H ∈ S has a constant number of children whose union is H. The

children form a edge-disjoint partition of H, and the intersection of their vertex sets
is a balanced separator S(H) of H. Define the set of eliminated vertices at H to be
FH

def
= S(H) \ ∂H.

The set FH ∪ ∂H consists of all vertices in the boundary and separator, which can
intuitively be interpreted as the skeleton of H. In later sections, we recursively construct
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graphs (matrices) on FH ∪ ∂H which capture compressed information about all of H.
By definition of boundary vertices, for a child D of H, we have ∂D def

= (∂H ∪ S(H)) ∩
V (D).

3. At a leaf node H, we define S(H) = ∅ and FH = V (H) \ ∂H. (This convention allows
leaf nodes to exist at different levels in S.) The leaf nodes of S partition the edges of G.

We use η to denote the height of S.

For a separator tree to be meaningful, the leaf node regions should be sufficiently small, to
indicate that we have a good overall decomposition of the graph. Additionally, for our work,
we want a more careful bound on the sizes of the skeleton of regions. This motivates the
following refined definition:

Definition 3.13 ((a, b, λ)-separator tree). Let G be a graph with n vertices, m edges, and
max hyperedge size ρ. Let a ∈ [0, 1] and b ∈ (0, 1) be constants, and λ ≥ 1 be an expression in
terms of m,n, ρ. An (a, b, λ)-separator tree S for G is a separator tree satisfying the following
additional properties:

1. There are at most O(b−i) nodes at level i in S,

2. any node H at level i satisfies |FH ∪ ∂H| ≤ O(λ · bai),

3. a node H at level i is a leaf node if and only if |V (H)| ≤ O(ρ).

Intuitively, a and b come from the separability parameters of G, and λ is a scaling factor for
node sizes in S. Since there could be hyperedges of size ρ, regions of size ρ are not necessarily
separable, so we set the region as a leaf.

We make extensive use of these properties in subsequent sections when computing run-
times.

For now, we show how to construct a separator tree for an nα-separable graph by modifying
the proof from [68], as well as for a treewidth-τ graph.

Lemma 3.14. Suppose G is a graph on n vertices and m edges. If G is nα-separable for
α < 1, then G admits an (α, b, cnα)-separator tree, where b ∈ (0, 1) and c > 0 are some
constants. Furthermore, if a balanced vertex separator for G can be computed in T (n) time,
then the separator tree can be constructed in Õ(T (n)) time.

Proof. Let b′ ∈ (0, 1) and c′ = 1 (without loss of generality) be the parameters for G being
nα-separable. In the separator tree construction process, assume inductively that we have
constants b ∈ (0, 1) and c > 0, both to be chosen later, such that for any node H at level i,
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𝑆(𝐻)

𝜕(𝐻)

𝐹𝐻 𝐹𝐻

Level: 0

Level: 1

Level: 2

Figure 3.2: An example of a separator tree. The bold edges denote the boundary of each
component, ∂H while the dotted lines denote the separators S(H). Note that FH = S(H)\∂H
is defined differently on the leaves.

we have |V (H)| ≤ bin and |∂H| ≤ cnα · bαi. In the base case at the root node, we have i = 0,
and |V (GA)| ≤ n and |∂GA| = 0 ≤ cnα.

We show how to construct the nodes at level i+ 1. Let H be an already-constructed node at
level i. There are three cases:

1. If H satisfies |V (H)| ≤ bi+1n and |∂H| ≤ cnα · bα(i+1), put a copy of H as its only child
at level i+ 1.

2. If |V (H)| ≥ bi+1n, then assign a weight of 1 to all vertices, find a balanced vertex
separator S(H), and partition H accordingly into H1 and H2. Let us consider H1; the
analogous holds for H2.

By definition of separability, we know |V (H1)| ≤ b′ · |V (H)|+ |V (H)|α ≤ b · |V (H)| ≤
bi+1n as long as b ∈ (b′, 1). If |∂H1| ≤ c · |V (H1)|α, then we can upper bound this
expression by cnα · bα(i+1), and we are done.

On the other hand, if |∂H1| > c · |V (H1)|α, then by definition of boundary, we have
|∂H1| ≤ |∂H|+ |S(H)| ≤ (c+ 1)nα · bαi using the guarantees at H. Next, we assign a
weight of 1 to vertices in ∂H1 and 0 to all other vertices, find a balanced separator S(H1)

of H1 with respect to these weights, and create two children D1, D2 of H1 accordingly.
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Then, for j = 1, 2, we have

|∂Dj| ≤ b · |∂H1|+ |V (H1)|α

≤ b(c+ 1)nα · bαi + nα · bα(i+1)

≤
(
b1−α · c+ 1

c
+

1

c

)
· cnα · bα(i+1),

As long as c is large enough so the expression in the parentheses to be less than 1. In
this case, observe that we can add S(H1) to the balanced separator S(H), and set D1

and D2 directly as the children of H.

3. If |V (H)| ≤ b(i+1)n and |∂H| ≥ cnα · bα(i+1), then we apply case 2 with H1 being H.

So we have shown inductively that at the end of this construction, any nodeH at level i satisfies
|V (H)| ≤ bin and |∂H| ≤ cnα · bαi. It follows that |FH ∪ ∂H| ≤ |S(H)|+ |∂H| = O(cnα · bαi).

Next, we show that there are only O(b−i) nodes at level i. Let Li(n) denote the total number
of boundary vertices with multiplicities, when carrying out the construction starting on a
graph of size n and ending when each leaf node H satisfies the level-i assumptions. We can
recursively write

Li(k) =
4∑
j=1

Li(bjk + 3ckα), if k > Cbin

Bi(k) = 1 else.

where
∑
bj = 1, each bj ≤ b′, and C is a positive constant we choose. To see this, note

that a node of size k has at most four children in the construction; the separator is of size
3ckα since we may need to compute up to three separators each of size ckα and take their
union; and child j has at most bjk vertices that are not from the separator. Solving the
recursion yields Li(k) ≤ k/(Cbin) − γkα for some constant γ > 0. Therefore, there are at
most Li(n) ≤ O(b−i) nodes at level i.

Finally, it is straightforward to see that the separator tree can be computed in Õ(T (n))

time, since the node sizes decrease by a geometric factor as we proceed down the tree during
construction.

Lemma 3.15. Suppose G is a graph on n vertices and m edges. If G is nα-separable for
α < 1, then G admits an (α, b, cnα)-separator tree, where b ∈ (0, 1) and c > 0 are some
constants. Furthermore, if a balanced vertex separator for G can be computed in T (n) time,
then the separator tree can be constructed in Õ(T (n)) time.
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First, we show how to construct a (0, 1/2, O(τ log n))-separator tree S for GA when we have
a tree decomposition of GA of width τ . At the root of S, we can use the tree decomposition
to compute a balanced separator S of GA of size O(τ) in Õ(nτ) time (c.f. [58, Theorem
4.17]), so that the two parts A and B of GA \ S each have size at most 2

3
n. We construct two

children of the root node on the vertex sets A ∪ S and B ∪ S respectively, and apply this
procedure recursively until the nodes are of size at most 9τ .

Claim 3.16. There are O(n/τ)-many leaves at the end of this construction.

Proof. Let L(k) denote the number of leaves when starting the construction with a size k
subgraph. We know L(k) = 1 if k ≤ 9τ , and L(k) = L(k1 + τ) + L(k2 + τ) if k > 9τ , where
k1 + k2 + τ = k and k1, k2 ≤ 2/3k. By induction, we can show that L(k) ≤ 2(k/τ − 1) when
k > 2τ , where the balanced separator crucially ensures that the recursion does not reach the
base case of k ≤ 2τ .

3.4 Laplacian, Cholesky decomposition and Schur complement

Now, we switch gears back to discussing matrices, but this time aided by our understanding
of their structure as captured by their dual graph. Let us begin with a little linear algebra.

Definition 3.17. Let G be a graph on n vertices with positive weighted edges given by
w ∈ RE

+. Suppose its vertex-edge incidence matrix is given by A ∈ Rn×m. Then its (weighted)
Laplacian is the matrix L = AWA>, where W = diag(w).

We treat graphs and their Laplacians interchangeably. We recall some useful facts about
Laplacian matrices:

Fact 3.18. For any n× n Laplacian L, we have rank(L) = n− 1, and 1 ∈ Kernel(L). The
projection matrix onto L’s image is PL = I− 11>/n.

Definition 3.19. Let M be a real symmetric matrix. The spectral decomposition of M is
given by

M = QΛQ> =
∑
λ∈Λ

λPλ,

where Λ is the set of eigenvalues of M, Λ is the diagonal matrix of eigenvalues, and Pλ is the
orthogonal projector onto the eigenspace with eigenvalue λ. We define the Moore-Penrose
pseudo-inverse of M, denote by M†, by

M† =
∑

λ∈Λ,λ 6=0

λ−1Pλ.
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The Moore-Penrose pseudo-inverse is unique, and satisfies

MM†M = M;

M†MM† = M†.

Fact 3.20. Suppose M is a symmetric matrix and X is a non-singular matrix, and P is the
projection matrix onto the image of X>MX. Then,(

X>MX
)†

= PX−1M† (X−1
)>

P.

Next, let G be an edge-weighted graph. Consider the partition of vertices in G into two
subsets C and F = V (G) \ C called boundary and interior vertices. This partitions L into
four blocks:

L =

[
LF,F LF,C

LC,F LC,C

]
.

Definition 3.21 (Block Cholesky decomposition). The block Cholesky decomposition of a
symmetric matrix L with blocks indexed by F and C defined as above is:

L =

[
I 0

LC,F (LF,F )−1 I

] [
LF,F 0

0 Sc(L, C)

] [
I (LF,F )−1LF,C

0 I

]
. (3.1)

The middle matrix in the decomposition is a block-diagonal matrix with blocks indexed by F
and C, with the lower-right block being:

Definition 3.22 (Schur complement). The Schur complement Sc(L, C) of L onto C is the
Laplacian matrix resulting from a partial symmetric Gaussian elimination on L. Formally,

Sc(L, C) = LC,C − LC,FL−1
F,FLF,C .

It is known that Sc(L, C) is the Laplacian of another graph with vertex set C. We further
use the convention that if H is a subgraph of G and V (H) ⊂ C, then Sc(H,C) simply means
Sc(H,C∩V (H)). Graph theoretically, the Schur complement has the following interpretation:

Lemma 3.23. Let V (G) = {v1, . . . , vn}. Let C = V (G)− v1. Let wij denote the weight of
edge vivj. Then

Sc(L, C) = G[C] +H,
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where G[C] is the subgraph of G induced on the vertex set S, and H is the graph on S

with edges vivj where i, j ∈ N(v1), and wij = w1iw1j/w1, where w1 is the total weight of
edges incident to v1 in G. Note that on the right hand side, we use a graph to mean its
Laplacian.

Taking Schur complement is an associative operation. Furthermore, it commutes with edge
deletion, and more generally, edge weight deletion. Finally, for our purposes, it can be
decomposed under certain special circumstances.

Lemma 3.24. If X ⊆ Y ⊆ V (G), then Sc(Sc(L, Y ), X) = Sc(L, X).

Lemma 3.25. Let we denote the weight of edge e in G. Suppose C ⊆ V (G), and H is a
subgraph of G on the vertex set C with edge weights w′e ≤ we for all edges in G[C]. Let L′

denote the Laplacian of H. Then, Sc(L− L′, C) = Sc(L, C)− L′.

Lemma 3.26. Let we denote the weight of edge e in G. Suppose C ⊆ V (G), and e

is an edge not incident to any vertex in C. Let L′ be the Laplacian of G \ e. Then,
Sc(L′, C) = Sc(L, C).

Lemma 3.27. Let L be the Laplacian of graph G with the decomposition L = L1 + L2,
where L1 is a Laplacian supported on the vertex set V1 and L2 on V2. Furthermore, suppose
V1 ∩ V2 ⊆ C for some vertex set C ⊆ V (G). Then

Sc(L, C) = Sc(L1, C ∩ V1) + Sc(L2, C ∩ V2).

Proof. We have

Sc(L, C) = Sc(L1 + L2, C)

= Sc(Sc(L1 + L2, C ∪ V2), C)

= Sc(Sc(L1, C ∪ V2) + L2, C) (by Lemma 3.25)
= Sc(Sc(L1, C) + L2, C) (since (C ∪ V2) ∩ V1 ⊆ C)
= Sc(L1, C) + Sc(L2, C), (by Lemma 3.25)
= Sc(L1, C ∩ V1) + Sc(L2, C ∩ V2) (since Li is supported on Vi for i = 1, 2)

as desired.

3.5 Recursive Cholesky factorization

Let S be any separator tree of the dual graph GA of matrix A. In this section, we show how
to use S to factor the matrix L†

def
= (AWA>)† recursively.
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Definition 3.28 (Ci, Fi). Let S be the separator tree of GA with height η. For all 0 ≤ i ≤ η,
define Fi =

⋃
H∈T (i) FH to be the vertices eliminated at level i, and define Ci =

⋃
H∈T (i) ∂H

to be the vertices remaining after eliminating vertices at level ≥ i. We define Cη to be V (GA).

Note that Fi is the disjoint union of FH over all nodes H at level i in the separator tree.
F0, . . . , Fη partitions V (GA). By the definition of ∂H and FH , we know Fi = Ci+1 \ Ci for
all 0 ≤ i ≤ η. It follows that C0

def
= FR ⊂ · · · ⊂ Cη−1 ⊂ Cη = V (GA) and Ci = ∪j≤iFj where

R is the root node.

These sets generalize the sets C and F from the block Cholesky decomposition in (3.1).

Lemma 3.29. By recursively applying Eq. (3.1), we can decompose L as follows:

L = U(η)> · · ·U(1)>

 Sc(L, Cη)Fη ,Fη · · · 0
... . . . ...
0 . . . Sc(L, C0)F0,F0

U(1) · · ·U(η), (3.2)

where the U(i)’s are upper triangular matrices with

U(i) = I + (Sc(L, Ci+1)Fi,Fi)
−1 Sc(L, Ci+1)Fi,Ci .

Furthermore, by Lemma 3.27, we can write

Sc(L, Ci) =
∑

H∈S(i)

Sc(L[H], FH ∪ ∂H).

Combining with Fact 3.20, we have the following decomposition for L†:

Theorem 3.30 (L† factorization). Let S be the separator tree of GA with height η and root
node R. For each node H ∈ S with hyperedges E(H), let AH ∈ Rn×m denote the matrix A

restricted to columns indexed by E(H). Define

L[H]
def
= AHWAH

>, and
L(H) def

= Sc(L[H], FH ∪ ∂H).

Then, we have

L† = PLU(η)−1 · · ·U(1)−1
ΓU(1)−> · · ·U(η)−>PL, (3.3)



71

where PL is the projection onto the image of L, and

Γ
def
=



∑
H∈S(η)

(
L

(H)
FH ,FH

)−1

. . . 0 0
... . . . ...

...

0 . . .
∑

H∈S(1)

(
L

(H)
FH ,FH

)−1

0

0 . . . 0
(
L

(R)
FR,FR

)†

 . (3.4)

Proof. Note that the final block of Γ is
(
L

(R)
FR,FR

)†
=
(∑

H∈S(0) L
(H)
FH ,FH

)†
. In all other blocks of

Γ, each term L
(H)
FH ,FH

is indeed invertible. The identity follows immediately from Fact 3.20.

Remark 3.31. If A is the vertex-edge incidence matrix of graph GA with Laplacian L, then
PLA = A, so the projection matrix PL can be safely omitted from the data structure.

3.6 Approximate recursive Cholesky factorization

Next, we show that the recursive factorization can also be approximated. We first formalize
approximate Schur complements.

Definition 3.32 (Approximate Schur complement). LetG be a weighted graph with Laplacian
L, and let C be a set of boundary vertices in G. We say that a Laplacian matrix S̃c(L, C) is
an ε-approximate Schur complement of L onto C if S̃c(L, C) ≈ε Sc(L, C), where we use ≈ε
to mean an eε-spectral approximation.

Next, we have the approximate version of Lemma 3.29.

Lemma 3.33. Suppose at every node H ∈ S, we have an approximate Schur complement

L(H) ≈εP Sc(L[H], FH ∪ ∂H).

Then, we have
L ≈ηεP L̃

def
= Ũ(η)> · · · Ũ(1)>T̃Ũ(1) · · · Ũ(η), (3.5)

where

T̃ =


∑

H∈S(η) L
(H)
FH ,FH

· · · 0
... . . . 0

0 0
∑

H∈S(0) L
(H)
FH ,FH


and

Ũ(i) = I +
∑

H∈S(i)

(
L

(H)
FH ,FH

)−1

L
(H)
FH ,∂H

.
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Furthermore, 1 is in the null space of L̃, and rank(L̃) = n− 1.

Proof. Let Ci, Fi be defined for each i according to Definition 3.28.

Let L(i) def
=
∑

H∈S(i) L(H). Note we have the decomposition

L
(i)
Fi,Fi

def
=
∑

H∈S(i)

L
(H)
FH ,FH

,

L
(i)
Ci,Fi

=
∑

H∈S(i)

L
(H)
Ci,Fi

=
∑

H∈T (i)

L
(H)
∂H,FH

.

Recall that the regions in S(i) partition the graph G. Furthermore, the intersection of
H,H ′ ∈ S(i) is on their boundary, which is contained in Ci−1. Thus, we apply Lemma 3.27
to get

Sc(L, Ci) =
∑

H∈S(i)

Sc(L[H], Ci ∩ V (H))

=
∑

H∈S(i)

Sc(L[H], ∂H ∪ FH)

≈εP
∑

H∈S(i)

L(H) = L(i).

(3.6)

Now, we prove inductively from i = η to i = 1 that

L ≈(η−i+1)εP Ũ(η)> · · · Ũ(i+1)>


L

(η)
Fη ,Fη

· · · 0 0
... . . . 0 0

0 0 L
(i+1)
Fi+1,Fi+1

0

0 0 0 L(i)

 Ũ(i+1) · · · Ũ(η). (3.7)

We factor L(i) in Eq. (3.7) using Cholesky decomposition. L(i) is supported on Ci, and we
can partition Ci = Fi ∪ Ci−1. Then,

L(i) =

[
I 0

L
(i)
Ci,Fi

(L
(i)
Fi,Fi

)−1 I

][
L

(i)
Fi,Fi

0

0 Sc(L(i), Ci−1)

][
I (L

(i)
Fi,Fi

)−1L
(i)
Fi,Ci

0 I

]
. (3.8)

For the Schur complement term in the factorization, we have

Sc(L(i), Ci−1) ≈iεP Sc(Sc(L, Ci), Ci−1) (by Eq. (3.6))
= Sc(L, Ci) (by transitivity of Schur complements)
≈εP L(i−1). (by Eq. (3.6))
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So we can use L(i−1) in place of the Schur complement term in Eq. (3.8), whose equality
becomes an approximation with factor εP. At the root level, L

(0)
F0,F0

= L(0) since C0 = ∅, so
we have the overall expression.

To show L̃1 = 0, we start with the fact that L(0) is a Laplacian, so its rows and columns sum
to zero. Substituting L(0) in (3.8) for i = 1, we see that L(1)’s rows and columns also sum to
zero. Continuing this process, we conclude L̃’s rows and columns sum to zero.

Finally, in the decomposition of L̃, observe that Ũ(1) · · · Ũ(η) is full rank, and each block of
T̃ is full rank, except for the last block L(η) whose rank is one less than full. Therefore, the
rank of L̃ is n− 1.

Finally, we come to the approximation of L†.

Theorem 3.34 (L† approximation). Suppose for each H ∈ S, we have a Laplacian L(H)

satisfying
L(H) ≈εP Sc(L[H], ∂H ∪ FH).

Then, we have
L† ≈ηεP Π(η)> · · ·Π(1)>Γ̃Π(1) · · ·Π(η), (3.9)

where PL is the projection onto the image of L,

Γ
def
=



∑
H∈S(η)

(
L

(H)
FH ,FH

)−1

. . . 0 0
... . . . ...

...

0 . . .
∑

H∈S(1)

(
L

(H)
FH ,FH

)−1

0

0 . . . 0
(
L

(R)
FR,FR

)†

 , (3.10)

with R denoting the root, and

Π(i) = I−
∑

H∈S(i)

L
(H)
∂H,FH

(
L

(H)
FH ,FH

)−1

.

Proof of Theorem 3.34. Let L̃ denote the ηεP approximation of L in Lemma 3.33. Applying
Fact 3.20, we have

L̃† = PL̃

(
Ũ(1) · · · Ũ(η)

)−1

T̃†
((

Ũ(1) · · · Ũ(η)
)−1
)>

PL̃,

where T̃ is the block diagonal matrix in Lemma 3.33. We note that (Ũ(i))−> = Π(i), and
T̃−1 = Γ̃. Since 1 spans the null space of both L and L̃, we conclude PL̃ = PL and
L̃† ≈ L†.
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3.7 Linear operator decomposition: tree operator

In this section, we fix T to be a constant-degree rooted tree with root node G, which we call
the operator tree. We define two special classes of linear operators that build on the structure
of T . The advantage of these operators lie in their decomposability, which allows them to be
efficiently updated.

Let each node H ∈ T be associated with a set FH , where the FH ’s are pairwise disjoint. Let
each leaf node L ∈ T be further associated with a non-empty set E(L), where the E(L)’s
are pairwise disjoint. For a non-leaf node H, define E(H)

def
=
⋃

leaf L∈TH E(L). Finally, define
E

def
= E(G) =

⋃
leaf L∈T E(L) and V def

=
⋃
H∈T FH .

Definition 3.35 (Inverse tree operator). Let T be an operator tree with the associated sets
as above. We say a linear operator ∇ : RE 7→ RV is an inverse tree operator supported on T
if there exists a linear edge operator ∇H for each non-root node H in T , corresponding to
the edge from H to its parent, such that ∇ can be decomposed as

∇ =
∑

leaf L, node H : L∈TH

IFH∇H←L,

where ∇H←L is defined as follows: If L = H, then ∇H←L
def
= I; otherwise, suppose the path in

T from leaf L to node H is given by (Ht
def
= L,Ht−1, . . . , H1, H0

def
= H), then

∇H←L
def
= ∇H1 · · · ∇Ht−1∇Ht .

To maintain ∇, it will suffice to maintain ∇H at each non-root node H in T .

Intuitively, when applying an inverse tree operator to a vector v ∈ RE, v is partitioned
according to the leaves of T , and then the edge operators are applied sequentially along the
tree edges in a bottom-up fashion. It is natural to then also define the opposite process,
where edge operators are applied along the tree edges in a top-down fashion.

Definition 3.36 (Tree operator). Let T be an operator tree with the associated sets as
above. We say a linear operator ∇ : RV 7→ RE is tree operator supported on T if there exists
a linear edge operator ∇H for each non-root node H in T , corresponding to the edge from H

to its parent, such that ∇ can be decomposed as

∆
def
=

∑
leaf L, node H : L∈TH

∆L←HIFH .

where ∆H←L is defined as follows: If L = H, then ∆L←H
def
= I. Otherwise, suppose the path

in T from node H to leaf L is given by (Ht
def
= L,Ht−1, . . . , H0

def
= H), then

∆L←H
def
= ∆Ht · · ·∆H2∆H1 .
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We define the complexity of a tree (and inverse tree) operator to be parameterized by the
number of edge operators applied.

Definition 3.37 (Query complexity). Let ∆
def
= {∆H : H ∈ T } be a tree (or inverse tree)

operator on tree T . Suppose for any set H of K distinct non-root nodes in T , and any two
families of K vectors indexed by H, {uH : H ∈ H} and {vH : H ∈ H}, the total time to
compute {u>H∆H : H ∈ H} and {∆HvH : H ∈ H} is bounded by f(K). Then we say ∆ has
query complexity f for some function f .

Without loss of generality, we may assume f(0) = 0, f(k) ≥ k, and f is concave.

By examining the definition of the inverse tree and tree operator, we see they are related.

Lemma 3.38. If ∆ is a tree operator on T , then ∆> is an inverse tree operator on T , where
its edge operators are obtained from ∆’s edge operators by taking a transpose. Furthermore,
∆ and ∇ have the same query and update complexity.

First, we present some of the alternative decomposition properties of the tree operator.

Definition 3.39 (Subtree operator). Let ∆ be a tree operator on T . Recall TH is the
complete subtree of T rooted at H. We define the subtree operator ∆(H) at each node H to
be

∆(H) def
=

∑
leaf L∈TH

∆L←H . (3.11)

Corollary 3.40. Based on the above definitions, we have

∆ =
∑
H∈T

∆(H)IFH . (3.12)

Furthermore, if H has children H1, H2, then

∆(H) = ∆(H1)∆H1 + ∆(H2)∆H2 . (3.13)

The output of ∆ when restricted to E(H) for a node H ∈ T can be written in two parts,
which is useful for our data structures. The first part involves summing over all nodes in TH ,
ie. descendants of H and H itself, and the second part involves a sum over all ancestors of
H.

Lemma 3.41. At any node H ∈ T , we have

IE(H)∆ =
∑
D∈TH

∆(D)IFD + ∆(H)
∑

ancestor A of H

∆H←AIFA .
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Proof. We consider the terms in the sum for ∆ that map into to E(H), which is precisely
the set of leaf nodes in the subtree rooted at H.

IE(H)∆ =
∑

leaf L∈TH

∑
A:L∈TA

∆L←AIFA .

The right hand side involves a sum over the set {(L,A) : leaf L ∈ TH , L ∈ TA}. Observe
that (L,A) is in this set if and only if A is a descendant of H, or A = H, or A is an ancestor
of H. Hence, the summation can be written as∑

leaf L ∈ TH

∑
node A ∈ TH

∆L←AIFA +
∑

leaf L ∈ TH

∑
ancestor A of H

∆L←AIFA .

The first term is precisely the first term in the lemma statement. For the second term, we
can use the fact that A is an ancestor of H to expand ∆L←A = ∆L←H∆H←A. Then, the
second term is ∑

leaf L ∈ TH

∑
ancestor A of H

∆L←H∆H←AIFA

=
∑

leaf L ∈ TH

∆L←H

( ∑
ancestor A of H

∆H←AIFA

)

= ∆(H)

( ∑
ancestor A of H

∆H←AIFA

)
,

by definition of ∆(H).

Now, we consider the cost of applying the inverse tree operator and the tree operator.

Lemma 3.42. Let ∇ : RE 7→ RV be an inverse tree operator on T with query complexity
Q. Given v ∈ RE, we can compute ∇v as well as yH

def
=
∑

leaf L∈TH ∇H←Lv for all H ∈ T in
O(Q(ηK)) time, where K = nnz(v) and η is the height of T .

Proof. Recall the definition

∇v def
=
∑
leaf L

( ∑
H: L∈TH

IFH∇H←L

)
v.

At a leaf node L, if we have ve = 0 for all e ∈ E(L), then we can ignore the term for L in
the outer sum. So we can reduce ∇v to consist of at most K terms in the outer sum. We
can further rearrange the order of applying the edge operators so that each edge operator is
applied at most once, and this naturally gives the values for all non-zero yH ’s. We bound the
overall runtime loosely by O(Q(ηK)).
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Unlike the inverse tree operator, the tree operator is applied downwards along a tree, and
therefore we do not have non-trivial bounds on total number of edge operators applied.
Instead, we have a more general bound:

Lemma 3.43. Let ∆ : RV 7→ RE be a tree operator on T with query complexity Q. Given
z ∈ RV , we can compute ∆v in O(Q(|E|)) time.

Proof. We simply observe that we can compute ∆v by applying each edge operator at most
once. Since the leaf nodes partition the set E, we know in T , there are O(|E|) edge operators
in total, so the overall time is at most O(Q(|E|)).

With the appropriate partial computations taking advantage of the decomposition of ∇,
we can maintain ∇v efficiently for dynamic ∇ and v. Specifically, we use the following
property:

Lemma 3.44. Given a vector v ∈ RE, let yH
def
=
∑

leaf L∈TH ∇H←Lv for each H ∈ T . If H
has children H1, H2, then

yH = ∇H1yH1 +∇H2yH2 . (3.14)

Furthermore, ∑
H∈T

IFHyH = ∇v. (3.15)

Lemma 3.45. Let ∇ : RE 7→ RV be an inverse tree operator with query complexity Q. Let
∇(new) be ∇ with K updated edge operators. Suppose we know ∇v, and we know yH

def
=∑

leaf L∈TH ∇H←Lv at all nodes H, then we can compute (∇(new) −∇)v and the y(new)
H ’s in

O(Q(ηK)) time.

Proof. Observe that for a node H ∈ T , if no edge operator in TH was updated, then yH
remains the same. We use Eq. (3.14) to compute y(new)

H up the tree for the O(ηK)-many
nodes that admit changes, and then Eq. (3.15) to extract the change (∇(new) −∇)v.
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Chapter 4

IPM projection as tree operator

In this chapter, we explore the separable structure of the dual graph GA of the LP constraint
matrix A, and use these properties to help define and maintain the tree operator and inverse
tree operator as needed for the IPM framework.

Throughout this section, we fix A ∈ Rn×m, so that the dual graph GA = (V,E) has n vertices,
m hyperedges. Additionally, let ρ denote the max hyperedge size in GA; equivalently, ρ is
the column sparsity of A.

4.1 Exact projection operator definition

Suppose S is a separator tree for GA. In this subsection, we define the operator tree T based
on S, followed by the tree operator ∆ and inverse tree operator ∇ which will be supported
on T . Finally, we will show that our definitions indeed satisfy

W1/2Pw = ∆∇.

Recall that S is a constant-degree tree. The leaf nodes of S partition the hyperedges of GA,
however, we do not have a bound on the number of hyperedges in a leaf node. In constructing
T , we simply want to modify S so that each leaf contains exactly one hyperedge. Specifically,
for each leaf node H ∈ S containing |E(H)| hyperedges, we construct a complete binary tree
T +
H rooted at H with |E(H)| leaves, assign one hyperedge from E(H) to one new leaf, and

attach T +
H at the node H. This construction yields the desired operator tree T whose height

is within a log |E| factor of S.

We define the tree operator ∆ on T follows: For non-root node H in T , let

∆H
def
=


IFH∪∂H −X(H)> if H exists in S
WE(H)

1/2AH
> if H is a leaf node in T

I else.

(4.1)

Note that the first two cases are indeed disjoint by construction. We pad zeros to all matrices
in order to arrive at the correct overall dimensions.
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Lemma 4.1. Let ∆ be the tree operator as defined above. Then

∆ = W1/2A>Π(η)> · · ·Π(1)>, (4.2)

where the Π(i)’s are defined in Theorem 3.30.

Note that this follows directly from the definitions in Theorem 3.30.

Next, we establish the query complexity of the tree operator:

Lemma 4.2. Suppose L is the total number of leaf nodes in S. The query complexity of ∆ is

Q(K) = O

ρK + max
H:set of K leaves in S

∑
H∈PS(H)

|FH ∪ ∂H|2


for K ≤ L, where PS(H) is the set of all nodes in S that are ancestors of some node in H
unioned with H. When K > L, then we define Q(K) = Q(L).

Proof. First, we consider the query time Q(1) for a single edge. Let u be any vector, and let H
be a non-root node in T . If H is a leaf node, then computing ∆Hu and u>∆H both take O(ρ)

time. If H exists in S, then computing ∆Hu takes O (|FH |2 + |∂H||FH |) ≤ O (|FH ∪ ∂H|2)

time, since the bottleneck is naively computing L
(H)
∂H,FH

(
L

(H)
FH ,FH

)−1

u. Therefore, Q(1) =

O (ρ+ maxH∈S |FH ∪ ∂H|2).

For K > 1, we can simply bound the query time for K distinct edges by

Q(K) = O

(
ρK + max

H:set of K nodes in S

∑
H∈H

|FH ∪ ∂H|2
)
.

Finally, note that we can take the summation over H ∈ PS(H) instead of H ∈ H for an
upper bound. In this case, it suffices to take the max over sets of leaf nodes.

By taking the transpose of ∆, we get an inverse tree operator, and together, they give the
projection matrix using Eq. (3.3).

Corollary 4.3. Let ∇ def
= ∆> be the inverse tree operator obtained from ∆ by transposing the

edge and leaf operators. Then

W1/2Pw
def
= W1/2W1/2A>L−1AW1/2 = (W1/2∆)Γ∇. (4.3)
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Remark 4.4. Without loss of generality, we have chosen to simplify our presentation and
consider ∆∇ in place of W1/2∆Γ∇.

This is possible for two reasons: One, W1/2∆ is a tree operator, which we can in fact maintain
in the same time complexity as ∆. Two, Γ is a block-diagonal matrix, with a block for each
H ∈ T that is indexed by FH . It is straightforward to show we can maintain and apply Γ∇
in the same time complexity as ∇.

4.2 Complexities

In this subsection, we summarize the runtime complexities for the tree operator, in the
special case when S is a (a, b, λ)-separator tree for GA. Parametrizing the separator tree
this way allows us to write the runtime expressions using geometric series. For non-negative
x, we use the standard bound

∑u
i=` x

i ≤ O(x` + xu). When it is clear x < 1, we bound∑u
i=` x

i ≤ O(x`).

Lemma 4.5. Suppose S is an (a, b, λ)-separator tree for GA on n vertices, m edges, with
max hyperedge size ρ, where a ∈ [0, 1] and b ∈ (0, 1). Let η denote the height of S, and let L
denote the number of leaf nodes. Let ∆ be the tree operator on T as defined in Section 4.1.
Then there is a data structure to maintain ∆ as a function of the weights w throughout
Solve, so that:

• The data structure can be initialize in time

O
(
ρω−1m+ λω ·

(
1 + (baω−1)η

))
. (4.4)

• The query complexity of ∆ is

Q(K) = O
(
ρK + λ2

(
1 + (min{K,L})1−2a

))
(4.5)

• When a < 1, the update complexity of ∆ is U(K) =

ρω−1K + λ2 min{K,λ}ω−2 +


λ2K1−2a if K ≤ λ

λ2K1−2a + λ
ω−1
1−αK

1−αω
1−α if λ < K ≤ λ · b(a−1)η

λω · b(aω−1)η if K > λ · b(a−1)η.

(4.6)

When a = 1, the update complexity is U(K) = ρω−1K + λ2 min{K,λ}ω−2.

Proof. The data structure we use to maintain ∆ is precisely the data structure DynamicSC
with respect to S.
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Initialization time. We use the runtime expression for Initialize in DynamicSC
(Lemma 4.7) combined with the parameters of the (a, b, λ)-separator tree. For any H,
we have |FH ∪ ∂H| ≤ ρ, so

∑
leaf H∈S |E(H)| · |FH ∪ ∂H|ω−1 ≤ ρω−1m. Moreover,∑

H∈S

|FH ∪ ∂H|ω ≤
η∑
i=0

b−i
(
λ · bai

)ω ≤ O(λω) ·
[
1 + (baω−1)η

]
.

Query complexity. We substitute the (a, b, λ)-separator tree bounds in Lemma 4.2, to
conclude that the query complexity of ∆ is

Q(K) = O

ρK +
∑

H∈PS(H)

(λ · bai)2

 ,

where H is any set of K leaf nodes in S. We group terms according to their node level, and
note that there are min{K, b−i}-many terms at any level i, so

= O

(
ρK +

η∑
i=0

min{K, b−i} · (λ · bai)2

)

= O(ρK) +O(λ2) ·

− logbK∑
i=0

b−i · b2ai +K ·
η∑

i=− logbK

b2ai


Note that K can be at most L in the summation, so we have

= O
(
ρK + λ2(1 + (min{K,L})1−2a)

)
.

Update complexity. When w changes, we update ∆ by invoking Reweight(δw) in
DynamicSC, where δw denotes the change in w. By Lemma 4.7, the runtime for the fixed
δw is ∑

leaf H: δw|E(H) 6=0

nnz(δw|E(H)) · |FH ∪ ∂H|ω−1 +
∑

node H: δw|E(H) 6=0

|FH ∪ ∂H|2 ·KH
ω−2. (4.7)

Hence, the update complexity of ∆ is the max of the above expression taken over all choices
of δw. For any leaf node H, we upper bound |FH ∪ ∂H|ω−1 ≤ ρω−1, and therefore the first
summation is at most ρω−1K.

For the second summation, we substitute in the (a, b, λ)-separator tree bounds, and group
terms according to their node level. Let S(i) denotes all nodes at level i in S. Then for any
δw, we have

∑
node H: δw|E(H) 6=0

|FH ∪ ∂H|2 ·KH
ω−2 ≤

η∑
i=0

(λ · bai)2 ·
∑

H∈S(i)

KH
ω−2

 , (4.8)
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where the KH ’s are non-negative integers satisfying
∑

H∈S(i) KH ≤ K and KH ≤ |FH ∪∂H| ≤
λ · bai for H ∈ S(i). We are interested in upper bounding Eq. (4.8). At any level i, there
are b−i nodes, and the sum is maximized when all the KH ’s are equal. Depending on the
relationship between K and the level i, we have the following three cases:

• If K ≤ b−i, that is, the total update rank is less than the number of nodes at the level,
then the sum is maximized if KH = 1 for K-many nodes, and KH = 0 for the rest.

• If b−i < K ≤ b−i · (λ · bai), the sum is upper bounded by setting KH = K/b−i.

• If K > O(b−i) · (λ · bai), the sum is upper bounded by setting KH = λ · bai.

Then, we can bound the summation term in Eq. (4.8) by∑
0≤i≤η
K≤b−i

K(λ · bai)2 +
∑

0≤i≤η:
b−i<K≤λ·b(a−1)i

(λ · bai)2 · b−i · (Kbi)ω−2 +
∑

0≤i≤η:
K>λ·b(a−1)i

b−i · (λ · bai)ω

≤ λ2K

η∑
i=− logbK

b2ai + λ2Kω−2

− logbK∑
i=

logb(K/λ)

a−1

b(2a+ω−3)i + λω

logb(K/λ)

a−1∑
i=0

b(aω−1)i.

We need to further consider different cases for the possible values of K, which affects the
summation indices. If logb(K/λ) < 0, i.e. K < λ, the expression simplifies to

λ2K1−2a + λ2Kω−2.

If 0 ≤ logb(K/λ)/(a− 1) ≤ η, i.e. λ ≤ K ≤ λ · b(a−1)η, the expression simplifies to

λ2K1−2a + λ
ω−1
1−αK

1−αω
1−α + λω.

And lastly, if logb(K/λ)/(a− 1) > η, i.e K > λ · b(a−1)η, the expression simplifies to

λω + λω · b(aω−1)η.

We combine the cases to arrive at the overall update complexity, having implicitly assumed
that α < 1. When α = 1, the summation in Eq. (4.8) is maximized when KH = min{K,λ} · bi
for H at level i. Then we can upper bound the summation term by

η∑
i=0

(λ · bi)2 · b−i · (min{K,λ} · bi)ω−2 ≤ O(λ2 min{K,λ}ω−2).
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4.3 Dynamic nested dissection

So far, we have defined the separator tree S for the graph GA, which we then used to define
the operator tree T that supports the tree operator ∆ needed for the IPM framework. Since
the tree operator is dynamic across the IPM, we discuss how to update it efficiently in this
section.

4.3.1 Exact version

Let us consider how to maintain L(H),Sc(L(H), ∂H), and (L
(H)
FH ,FH

)−1 at each node H ∈ S
using the data structure DynamicSC (Algorithm 7), as the weight vector w undergoes
changes throughout the IPM. This will in turn allow us to maintain the tree operator ∆.

We begin with a lemma showing that given a symmetric matrix and a low-rank update, we
can compute its new inverse and Schur complement quickly.

Lemma 4.6. Let L′ = L + UV ∈ Rn×n be a symmetric matrix plus a rank-K update, where
U and V> both have dimensions n×K. Given L′,U,V, we can compute L′−1 in O(n2Kω−2)

time.

Additionally, suppose we are also given L−1 and Sc(L, S) for an index set S. Then we can
compute Sc(L′, S), U′,V′ in O(n2Kω−2) time, so that Sc(L, S) + U′V′ = Sc(L′, S), and
U′,V′> both have K columns.

Proof. The Sherman-Morrison formula states

L′
−1

= L−1 − L−1U(IK + VL−1U)−1VL−1.

The time to compute this update is dominated by the time required to multiply an n× n
matrix with an n×K matrix, which is O(n2Kω−2).

For the second part of the lemma, recall that the Schur complement is defined to be:

Sc(L, C)
def
= LC,C − LC,FL−1

F,FLF,C . (4.9)

If we were to naively use this definition of the Schur complement to perform the updates and
construct U′ and V′>, we will run into an issue where the rank of the new update blows up by
a factor of 8, leading to an exponential blowup in the rank as we go up the levels recursively.
Instead, we make use of the fact that the inverse of the Schur complement, Sc(L, S)−1 is
exactly the S, S submatrix of L−1 to control the rank of the updates.
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We first apply the definition of Schur complement and then use the Sherman-Morrison formula
to get

Sc(L′, S)−1 = L′−1
S,S

= L−1
S,S −

(
L−1U(IK + VL−1U)−1VL−1

)
S,S

= Sc(L, S)−1 − ISL−1U(IK + VL−1U)−1VL−1IS.

This gives us the new rank-K update Sc(L′, S)−1 = Sc(L, S)−1 + U∗V∗ with

U∗ = −ISL−1U

V∗ = (IK + VL−1U)−1VL−1IS.

We can now determine the Schur complement update by applying Sherman-Morrison again:

Sc(L′, S) = Sc(L, S)− Sc(L, S)U∗(IK + V∗Sc(L, S)U∗)−1V∗Sc(L, S).

This is a rank-K update Sc(L′, S) = Sc(L, S) + U′V′ with

U′ = −Sc(L, S)U∗

V′ = (IK + V∗Sc(L, S)U∗)−1V∗Sc(L, S).

The time to compute U∗,V∗,U′,V′ are all dominated by the time to multiply an n × n
matrix with an n×K matrix, which is O(n2Kω−2).

Now, we are ready to present the data structure for maintaining the Schur complement
matrices along a separator tree.

Lemma 4.7. Let w be the weights changing at every step of the IPM. Let S be any
separator tree for GA. Recall GA has n vertices, m hyperedges, and max hyperedge size
ρ. Then the data structure DynamicSC (Algorithm 7) correctly maintains the matrices
L(H), (L

(H)
FH ,FH

)−1,Sc(L(H), ∂H) at every node H ∈ S dependent on w throughout the IPM.
The data structure supports the following procedures and runtimes:

• Initialize(S,w(init) ∈ Rm): Set w ← w(init), and compute all matrices with respect to
w, in time

O

( ∑
leaf H∈S

|E(H)| · |FH ∪ ∂H|ω−1 +
∑
H∈S

|FH ∪ ∂H|ω
)
.

• Reweight(δw ∈ Rm): Update the weight vector to w ← w + δw, and update all the
maintained matrices with respect to the new weights, in time

O

( ∑
leaf H∈H

nnz(δw|E(H)) · |FH ∪ ∂H|ω−1 +
∑
H∈H

|FH ∪ ∂H|2 ·Kω−2
H

)
.
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Algorithm 7 Data structure to maintain dynamic Schur complements
1: data structure DynamicSC
2: private: member
3: Hypergraph GA with incidence matrix A

4: w ∈ Rm: Dynamic weight vector
5: S: Separator tree of height η. Every node H of S stores:
6: FH , ∂H: Sets of eliminated vertices and boundary vertices of region H
7: E(H): Set of hyperedges of region H
8: L(H), (L

(H)
FH ,FH

)−1,Sc(L(H), ∂H),: Matrices to maintain as a function of w
9: L(H)−1: Additional inverse matrix to maintain as a function of w

10: UH ,VH : Low-rank update at H, used in Reweight

11: procedure Initialize(S, w(init) ∈ Rm)
12: S ← S,w ← w(init)

13: for level i = η to 0 do
14: for each node H at level i do
15: L(H), (L

(H)
FH ,FH

)−1,Sc(L(H), ∂H)← 0,0,0

16: SchurNode(H,w)

17: end for
18: end for
19: end procedure

20: procedure Reweight(δw ∈ Rm)
21: H ← set of nodes H in S where δw|E(H) 6= 0

22: for level i = η to 0 do
23: for each node H ∈ H at level i do
24: SchurNode(H, δw)

25: end for
26: end for
27: w ← w + δw
28: end procedure
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Algorithm 7 Data structure to maintain dynamic Schur complements
29: data structure DynamicSC
30: procedure SchurNode(H ∈ S, δw ∈ Rm)
31: if H is a leaf node then . rank of update ≤ min{nnz(δw|E(H)), |FH ∪ ∂H|}
32: L(H) ← L(H) + AHdiag(δw|E(H))A

>
H

33: else if nnz(δw|E(H)) ≤ |FH ∪ ∂H| then
. rank of update ≤

∑
child DKD ≤ nnz(δw|E(H))

34: L(H) ← L(H) +
∑

child D of H UDVD

35: else . rank of update ≤ |FH ∪ ∂H|
36: L(H) ←

∑
child D of H Sc(L(D), ∂D)

37: end if
38: Let KH

def
= min{nnz(δw|E(H)), |FH ∪ ∂H|}

. KH is upper bound on the rank of update to L(H)

39: Compute (L
(H)
FH ,FH

)−1 and L(H)−1 by Lemma 4.6
40: Compute Sc(L(H), ∂H) and its rank-KH update factorization UH ,VH by Lemma 4.6
41: end procedure

where H is the set of nodes H with δw|E(H) 6= 0, and KH
def
= min{nnz(δw|E(H)), |FH ∪

∂H|}.

Proof. Initialize is a special case of Reweight, where the change in the weight vector is
from 0 to w(init), so we focus on a single call of Reweight.

It suffices for Reweight visits only nodes in H, since if none of the edges in a region admits
a weight update, then the matrices stored at the node remain the same by definition. Also
note that H ∈ H implies all ancestors of H are also in H.

Correctness. We use the superscript (new) on L(H) to indicate that it is computed with
respect to the new weights, and (old) otherwise. Recall that L(H) is supported on FH ∪ ∂H.

We maintain some additional matrices at each node, in order to efficiently compute low-rank
updates. Specifically, we use helper matrices UH ,VH at H, and guarantee that during a
single Reweight(δw) call, after SchurNode(H, δw) is run, they satisfy Sc(L(H)(old)

, ∂H) =

Sc(L(H)(new)
, ∂H) + UHVH , and UH ,VH

> both have at most KH-many columns.

Now, we show inductively that after SchurNode(H, δw) is run, all matrices at H, as well as
all matrices at all descendants of H, are updated correctly: When H is leaf node, recall L(H)

is defined to be L[H]
def
= AHWE(H)AH

>, so clearly SchurNode updates L(H) correctly, and
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the rank of the update is at most KH . The remaining matrices at H are computed correctly
by Lemma 4.6.

Inductively, when H is a non-leaf node, the recursive property of Schur complements (c.f.
[56, Lemma 18]) allows us to write L(H)(new)

=
∑

child D of H Sc(L(D)(new)
, ∂D) at every node

H ∈ S. This formula trivially shows that the update L(H)(new)−L(H)(old) has rank |FH ∪ ∂H|
(ie. full-rank). Alternatively, if nnz(δw|E(H)) ≤ |FH ∪ ∂H|, then by the guarantees on the
helper matrices, we have

L(H)(new)
=

∑
child D of H

Sc(L(D)(new)
, ∂D)

=
∑

child D of H

Sc(L(D)(old)
, ∂D) + UDVD

= L(H)(old)
+

∑
child D of H

UDVD.

This gives a low-rank factorization of the update L(H)(new) − L(H)(old) with rank at most∑
child DKD, which we can show by induction is at most nnz(δw|E(H)). Since we have the

correct low-rank update to L(H), the remaining matrices at H again are computed correctly
by Lemma 4.6.

This completes the correctness proof.

Runtime. Consider the runtime of the procedure SchurNode(H, δw) at a node H: If H is
a leaf node, then computing the update to L(H) involves multiplying a |FH∪∂H|×nnz(δw|E(H))-
sized matrix with its transpose (Line 31). Note that if |FH ∪ ∂H| > nnz(δw|E(H)), then
this runtime can be absorbed into the runtime expression for the remaining steps of the
procedure, since KH = nnz(δw|E(H)). Otherwise, we use fast matrix multiplication which
takes O(nnz(δw|E(H)) · |FH ∪∂H|ω−1) time. If H is a non-leaf node, there are two cases for the
update to L(H) in the algorithm. The first case (Line 33) takes O (|FH ∪ ∂H| · (

∑
KD)) ≤

O(|FH ∪∂H| ·KH) time, and the second case (Line 35) takes O(|FH ∪∂H|2) time. Computing
the other matrices at any node H takes O

(
|FH ∪ ∂H|2 ·KH

ω−2
)
time by Lemma 4.6.

The runtime of Reweight(δw) is therefore given by∑
H∈H

SchurNode(H, δw) time

= O

( ∑
leaf H∈H

nnz(δw|E(H)) · |FH ∪ ∂H|ω−1 +
∑
H∈H

|FH ∪ ∂H|2 ·Kω−2
H

)
.

For Initialize, we further simplify the expression using nnz(δw|E(H)) = |E(H)| and KH ≤
|FH ∪ ∂H|.
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4.3.2 Approximate version

In this section, we prove the analogous results as the previous section, except we maintain
approximate Schur complements at each node H in T . We use the following result as a
black-box for computing sparse approximate Schur complements:

Lemma 4.8 (ApproxSchur procedure [63]). Let L be the weighted Laplacian of a graph
with n vertices and m edges, and let C be a subset of boundary vertices of the graph. Let
γ = 1/n3 be the error tolerance. Given approximation parameter ε ∈ (0, 1/2), there is
an algorithm ApproxSchur(L, C, ε) that computes and outputs a ε-approximate Schur
complement S̃c(L, C) that satisfies the following properties with probability at least 1− γ:

1. The graph corresponding to S̃c(L, C) has O(ε−2|C| log(n/γ)) edges.

2. The total running time is O(m log3(n/γ) + ε−2n log4(n/γ)).

First, we prove the correctness and runtime of ApproxSchurNode(H) in Algorithm 7. We
say ApproxSchurNode(H) ran correctly on a node H at level i in T , if at the end of the
procedure, the following properties are satisfied:

• L(H) is the Laplacian of a graph on vertices ∂H ∪ FH with Õ(δ−2|∂H ∪ FH |) edges,

• L(H) ≈iδ Sc(L[H], ∂H ∪ FH),

• S̃c(L(H), ∂H) ≈(i+1)δ Sc(L[H], ∂H), and the graph is on ∂H with Õ(δ−2|∂H|) edges.

Lemma 4.9. Suppose ApproxSchurNode(D) has run correctly for all descendants D of
H. then ApproxSchurNode(H) runs correctly.

Proof. When H is a leaf, the proof is trivial. L(H) is set to the exact Laplacian matrix of
the induced subgraph H of constant size. S̃c(L(H), ∂H) δ-approximates Sc(L(H), ∂H) =

Sc(L[H], ∂H) by Lemma 4.8.

Otherwise, suppose H is at level i with children D1 and D2. By construction of the separator
tree,we have ∂D1 ∪ ∂D2 = ∂H ∪ FH . For each j = 1, 2, we know inductively S̃c(L(Dj), ∂Dj)

has Õ(δ−2|∂Dj|) edges. Since we define L(H) to be the sum, it has Õ(δ−2(|∂D1|+ |∂D2|)) =

Õ(δ−2|∂H∪FH |) edges, and is supported on vertices ∂H∪FH , so we have the first correctness
property.

Inductively, we know S̃c(L(Dj), ∂Dj) ≈(i−1)δ Sc(L[Dj ], ∂Dj) for both j = 1, 2. (The height of
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Algorithm 8 Data structure to maintain dynamic Schur complement approximations, part 1
1: data structure ApproxDynamicSC
2: private: member
3: w ∈ Rm: weight vector
4: εP > 0: Overall approximation factor
5: δ > 0: Fast Schur complement approximation factor
6: T : Separator tree of height η. Every node H of T stores:
7: FH , ∂H: Interior and boundary vertices of region H
8: L(H) ∈ Rm×m: Laplacian supported on FH ∪ ∂H
9: S̃c(L(H), ∂H) ∈ Rm×m: δ-approximate Schur complement

10:

11: procedure Initialize(T , w ∈ Rm, εP > 0)
12: T ← T
13: δ ← εP/(η + 1)

14: w ← w

15: for i = 0, . . . , η do
16: for each node H at level i in T do
17: ApproxSchurNode(H)

18: end for
19: end for
20: end procedure
21:

22: procedure Reweight(δw ∈ Rm)
23: H ← set of leaf nodes H in T such that δE(H) 6= 0

24: w ← w + δw
25: for i = 0, . . . , η do . PT (H) is the set of nodes in H and their ancestors
26: for each node H at level i in PT (H) do
27: ApproxSchurNode(H)

28: end for
29: end for
30: end procedure
31:
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Algorithm 8 Data structure to maintain dynamic Schur complement approximations, part 2
32: data structure ApproxDynamicSC
33: procedure ApproxSchurNode(H ∈ T )
34: if H is a leaf node then
35: L(H) ← (B[H])>WE(H)B[H]

36: S̃c(L(H), ∂H)← ApproxSchur(L(H), ∂H, δ) . Lemma 4.8
37: else
38: Let D1, D2 be the children of H
39: L(H) ← S̃c(L(D1), ∂D1) + S̃c(L(D2), ∂D2)

40: S̃c(L(H), ∂H)← ApproxSchur(L(H), ∂H, δ)

41: end if
42: end procedure

Dj may or may not equal to i− 1 but it is guaranteed to be no more than i− 1.) Then

L(H) = S̃c(L(D1), ∂D1) + S̃c(L(D2), ∂D2)

≈(i−1)δ Sc(L[D1], ∂D1) + Sc(L[D2], ∂D2)

= Sc(L[D1], (∂H ∪ FH) ∩ V (D1)) + Sc(L[D2], (∂H ∪ FH) ∩ V (D2))

(by construction of the separator tree, ∂Dj = (∂H ∪ FH) ∩ V (Dj) for j = 1, 2)
= Sc(L[H], ∂H ∪ FH), (by Lemma 3.27)

so we have the second correctness property.

Line 40 returns S̃c(L(H), ∂H) with Õ(δ−2|∂H|) edges by Lemma 4.8. Also,

S̃c(L(H), ∂H) ≈δ Sc(L(H), ∂H)

≈(i−1)δ Sc(Sc(L[H], ∂H ∪ FH), ∂H)

= Sc(L[H], ∂H), (by Lemma 3.24)

giving us the third correctness property.

Lemma 4.10. The runtime of ApproxSchurNode(H) is Õ(δ−2|∂H ∪ FH |).

Proof. When H is a leaf node, computing L(H) = L[H] takes time proportional to |H| =

∂H ∪ FH . Computing S̃c(L(H), ∂H) takes Õ(δ−2|H|) time by Lemma 4.8.

Otherwise, when H has children D1, D2, computing L(H) requires accessing S̃c(L(Dj), ∂Dj)

for j = 1, 2 and summing them together, in time Õ(|∂D1|+ |∂D2|) = Õ(|∂H ∪ FH |). Then,
computing S̃c(L(H), ∂H) take Õ(δ−2|∂H ∪ FH |) by Lemma 4.8.
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Next, we prove the overall data structure correctness and runtime:

Theorem 4.11 (Schur complements maintenance). Given a separator tree T of height
η = O(logm) for the IPM input graph G, the deterministic data structure DynamicSC
(Algorithm 7) correctly maintains two Laplacians L(H) and S̃c(L(H), ∂H ∪ FH) at every node
H ∈ T , which are dependent on the dynamic weights w from the IPM. The data structure
supports the following procedures:

• Initialize(T ,w ∈ Rm
>0, εP > 0): Given the separator tree T , initial weights w, target

step accuracy εP, preprocess in Õ(δ−2
∑

H∈T |FH ∪ ∂H|) time.
• Reweight(δw ∈ Rm): Update the weight vector to w ← w + δw, and update all the
maintained matrices with respect to the new weights, in time

O

(∑
H∈H

δ−2 · |FH ∪ ∂H|

)
,

where H is the set of nodes H with δw|E(H) 6= 0.
• Access to Laplacian L(H) at any node H ∈ T in time Õ (εP

−2|FH ∪ ∂H|).
• Access to Laplacian S̃c(L(H), ∂H) at any node H ∈ T in time Õ (εP

−2|∂H|).

Furthermore, at all points during the IPM,

L(H) ≈εP Sc(L[H], FH ∪ ∂H) and S̃c(L(H), ∂H) ≈εP Sc(L[H], ∂H) (4.10)

for all H ∈ T with high probability.

Proof. Because we set δ ← εP/(η+ 1) in Initialize, combined with Lemma 4.9, we conclude
that for each H ∈ T ,

L(H) ≈εP Sc(L[H], ∂H ∪ FH)

and
S̃c(L(H), ∂H) ≈εP Sc(L[H], ∂H).

We next prove the correctness and runtime of Initialize. Because ApproxSchurNode(H)

is called in increasing order of level of H, each ApproxSchurNode(H) runs correctly and
stores the initial value of L(H) by Lemma 4.9. The runtime of Initialize is bounded by
running ApproxSchurNode on each node, i.e:

Õ(δ−2
∑
H∈T

|∂H ∪ FH |)

The proof for Reweight is similar to Initialize. Let K be the number of coordinates
changed in w. Then PT (H) contains all the regions with an edge with weight update. For each
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node H not in PT (H), no edge in H has a modified weight, and in this case, we do not need to
update L(H). For the nodes that do require updates, since ApproxSchurNode(H) is called
in increasing order of level of H, we can prove inductively that all ApproxSchurNode(H)

for H ∈ PT (H) run correctly. The time spent is bounded by Õ(δ−2
∑

H∈PT (H) |∂H ∪ FH |).

For accessing L(H) and S̃c(L(H), ∂H), we simply return the stored values. The time required
is proportional to the size of L(H) and S̃c(L(H), ∂H) respectively, by the correctness properties
of these Laplacians, we get the correct size and therefore the runtime.
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Chapter 5

IPM data structures

In this chapter, we give the remaining data structures for our robust IPM. For simplicity, we
reference PathFollowingLP instead of the more general PathFollowingRobust.

5.1 Dynamic implicit representation

Assuming we have dynamic inverse tree and tree operators ∇ and ∆ on tree T dependent
on w such that W1/2Pw = ∆∇, we can now state how to abstractly maintain the implicit
representation of the solutions throughout the PathFollowingLP procedure in the IPM.
Specifically, we want to maintain the solution x, and at every step k, carry out an update of
the form

x← x+ W1/2Pwv
(k). (5.1)

We design a data structure MaintainRep to accomplish this, by:

• At the start of PathFollowingLP, initializing the data structure using the procedure
Initialize with x = x(init),

• At each step k, updating the weights w in the data structure using the procedure
Reweight, followed by updating x according to Eq. (5.1) using the procedure Move,

• At the end of PathFollowingLP, outputing the final x using the procedure Exact.

The key to designing an efficient data structure is to make use of the structure of the operators.
Due to their decomposition along T , we can update the operators and apply them to vectors
without exploring all of T every time.

Theorem 5.1 (Implicit representation maintenance). Let w be the weights changing at every
step of PathFollowingLP. Suppose there exists dynamic inverse tree and tree operators ∇
and ∆ on tree T both dependent on w such that W1/2Pw = ∆∇ throughout the IPM. Let Q
be the max of the query complexity of the tree and inverse tree operator, and let U be the max
of the update complexity of the two operators. Suppose T has constant degree and height η.
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Then there is a data structure MaintainRep that satisfies the following invariants at the
end of step k:

• It explicitly maintains the dynamic weights w and step direction v from the current
step.

• It explicitly maintains scalar c and vectors z(step), z(sum), which together represent the
implicitly-maintained vector z def

= cz(step)+z(sum). At the end of step k, z(step) = ∇(k)v(k),
and

z =
k∑
i=1

∇(i)v(i).

• It implicitly maintains x so that at the end of step k,

x = x(init) +
k∑
i=1

∆(i)∇(i)v(i),

where x(init) is some initial value set at the start of PathFollowingLP.

The data structure supports the following procedures and runtimes:

• Initialize(∆,∇,v(init) ∈ Rm,w(init) ∈ Rm
>0,x

(init) ∈ Rm): Preprocess and set x ←
x(init).

The procedure runs in O(U(m) +Q(m)) time.

• Reweight(δw ∈ Rm
>0): Update the weights to w ← w + δw.

The procedure runs in O(U(ηK) +Q(ηK)) total time, where K = nnz(δw).

• Move(h ∈ R, δv ∈ Rm): Update the current step direction to v ← v + δv. Update the
implicit representation of x to reflect the following change in value:

x← x+ ∆∇v.

The procedure runs in O(Q(ηK)) time, where K = nnz(δv).

• Exact: Output the current exact value of x in O(Q(m)) time.

In this section, we give the general data structure MaintainRep, which implicitly maintains
a vector x throughout a call of PathFollowingLP. We break up the representation into two
parts, the first using the inverse tree operator, and the second using the tree operator.

Now we are ready for the complete data structure involving the inverse tree operator.
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Algorithm 9 Dynamic data structure to maintain cumulative ∇v
1: dynamic data structure InverseTreeOp
2: member:
3: T : tree supporting ∇ with edge operators on the edges
4: w ∈ Rm: dynamic weight vector
5: v ∈ Rn: dynamic vector
6: c, z(step), z(sum) ∈ Rn: coefficient, result vectors
7: yH ∈ Rn for each H ∈ T : sparse partial computations
8:

9: procedure Initialize(T ,w(init),v(init))
10: w ← w(init),v ← v(init), c← 0, z(sum) ← 0

11: Initialize ∇ on T based on w
12: Compute ∇v and yH ’s, set z(step) ← ∇v
13: end procedure
14:

15: procedure Reweight(δw)
16: w(new) ← w + δw
17: Let ∇(new) be the new tree operator using w(new)

18: z′ ← (∇(new) −∇)v, and update yH ’s . Lemma 3.45
19: z(step) ← z(step) + z′

20: z(sum) ← z(sum) − c · z′
21: w ← w(new),∇ ← ∇(new)

22: end procedure
23:

24: procedure Move(h, δv)
25: Compute z′ def

= ∇δv and the y′H
def
=
∑

leaf L ∈ TH ∇H←Lδv for each node H
26: . Lemma 3.42
27: z(step) ← z(step) + z′, and yH ← yH + y′H for each node H
28: z(sum) ← z(sum) − cz′
29: c← c+ 1

30: v ← v + δv
31: end procedure
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Theorem 5.2 (Inverse tree operator data structure). Let w ∈ Rm be the weights changing
at every step of PathFollowingLP, and let v ∈ Rn be a dynamic vector. Suppose
∇ : Rm 7→ Rn is an inverse tree operator dependent on w supported on T with query
complexity Q and update complexity U . Let η be the height of T . Then the data structure
InverseTreeOp (Algorithm 9) maintains z(k) def

=
∑k

i=1∇(i)v(i) so that at the end of each
step k, the variables in the algorithm satisfy

• z = cz(step) + z(sum),

• z(step) = ∇v, and

• yH =
∑

leaf L∈TH ∇H←Lv for all nodes H.

The data structure is initialized via Initialize in O(U(m) +Q(m)) time. At step k, there is
one call Reweight(δw) taking O(U(K) +Q(ηK)) time, where K = nnz(δw), followed by
one call of Move(h, δv) taking O(Q(η · nnz(δv))) time.

Proof. In the data structure, we always maintain z(step) and the yH ’s together. Specifically,
at every step, we update the yH ’s up the tree using the recursive property Eq. (3.14) only at
the necessary nodes, and from the yH ’s, we get z(step) =

∑
H IFHyH .

Consider Initialize. At the end of the function, the variables satisfy

z
def
= cz(step) + z(sum) = 0 · ∇v + 0 = 0,

and z(step) = ∇v, as required.

Let us consider Reweight. Let the superscript (new) denote the value of an algorithm variable
at the end of the function, and let no superscript denote the value at the start.

z(new) = c(new)z(step)(new)
+ z(sum)(new)

= c(z(step) + z′) + z(sum) − cz′

= cz(step) + z(sum),

and z(step)(new)
= z(step) + (∇(new) −∇)v

= ∇(new)v,
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as required. Similarly, let us consider Move:

z(new) = c(new)z(step)(new)
+ z(sum)(new)

= (c+ 1)(z(step) + z′) + z(sum) − cz′

= cz(step) + z(sum) + z(step),

and z(step)(new)
= z(step) +∇(v(new) − v)

= ∇v +∇(v(new) − v)

= ∇v(new),

which is exactly the update we want to make to z, and the invariant we want to maintain.

The runtimes follow directly from Lemmas 3.42 and 3.45.

Next, we present the tree operator data structure, which is significantly more involved
compared to the inverse tree operator. Applying the tree operator involves going down the
tree to the leaves, which is too costly to do at every step. To circumvent the issue, we use
lazy computations.

Theorem 5.3 (Tree operator data structure). Let w ∈ Rm be the weights changing at every
step of PathFollowingLP. Suppose ∆ : Rn 7→ Rm is a tree operator dependent on w
supported on T with query complexity Q and update complexity U . Let z ∈ Rn be the vector
maintained by Algorithm 9, so that at the end of step k, z =

∑k
i=1∇(i)v(i). Then the data

structure TreeOp (Algorithm 10) implicitly maintains x so that at the end of step k,

x(k) = x(init) +
k∑
i=1

∆(i)∇(i)v(i).

The data structure is initialized via Initialize in O(U(m)) time. At step k, there is one call
to Reweight(δw) taking O(U(K) +Q(ηK)) time, where K = nnz(δw), followed by one call
to Move(δz) taking O(nnz(δz)) time. At the end of PathFollowingLP, x is returned via
Exact in O(Q(m)) time.

Proof. We will show that the data structure maintains the implicit representation via the
identity

x = c∆z +
∑
H∈T

∆(H)uH , (5.2)

where the RHS expression refers to the state of the variables at the end of step k during the
algorithm.
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Algorithm 10 Dynamic data structure to maintain cumulative ∆z
1: dynamic data structure TreeOp
2: member:
3: T : tree supporting ∆

4: w ∈ Rm: dynamic weight vector
5: z ∈ Rn: dynamic vector
6: uH for each H ∈ T : lazy pushdown computation vectors

7: procedure Initialize(T ,w(init), z(init),x(init))
8: w ← w(init), z ← z(init)

9: Initialize ∆ on T based on w
10: uH ← 0 for each non-leaf H ∈ T
11: uH ← x(init)|E(H) for each leaf H ∈ T
12: end procedure

13: procedure Reweight(δw)
14: w ← w + δw
15: Let ∆(new) be the new tree operator wrt the new weights
16: Let H be all nodes H where ∆H changed
17: for H ∈ PT (H) going down the tree level by level do
18: Pushdown(H)

19: end for
20: for H ∈ PT (H) going down the tree level by level do
21: uH ← cz|FH
22: Pushdown(H)

23: end for
24: ∆←∆(new)

25: for H ∈ PT (H) going down the tree level by level do
26: uH ← −cz|FH
27: Pushdown(H)

28: end for
29: end procedure

30: procedure Move(δz)
31: z ← z + δz
32: end procedure
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Algorithm 10 Dynamic data structure to maintain cumulative ∆z, part 2
33: dynamic data structure TreeOp
34: procedure Exact
35: for H ∈ T going down the tree level by level do
36: uH ← uH + z|FH
37: Pushdown(H)

38: end for
39: return x defined by x|E(H)

def
= uH at each leaf H ∈ T

40: end procedure

41: procedure Pushdown(H ∈ T )
42: for each child D of H do
43: uD ← uD + ∆DuH
44: end for
45: uH ← 0

46: end procedure

At a high level, the variables ∆ and z in the data structure at step k represent the latest
∆(k) and z(k). We need to introduce additional vectors uH at every node H which intuitively
stores lazy computations at node H, in order to take advantage of the tree structure of ∆.
The function Pushdown performs the accumulated computation at H, and moves the result
to its children nodes to be computed lazily at a later point. The next claim describes this
process formally.

Claim 5.4. Let H ∈ T be a non-leaf node. Pushdown(H) does not change the value of the
implicit representation in Eq. (5.2). Also, at the end of the procedure, uH = 0.

Proof. For any variable in the algorithm, we add the superscript (new) to mean its state at
the end of Pushdown; if there is no superscript, then it refers to the state at the start.

We show the claim for when H has two children H1, H2. Note that ∆ and z are not touched
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by Pushdown, so we may ignore the term c∆z in Eq. (5.2). Then,∑
H′∈T

∆(H′)u
(new)
H′

= ∆(H)u
(new)
H +

∑
i=1,2

∆(Hi)u
(new)
Hi

+
∑

H′∈T ,H′ 6=H,H1,H2

∆(H′)uH′ (expand terms)

=
∑
i=1,2

∆(Hi)(uHi + ∆HiuH) +
∑

H′∈T ,H′ 6=H,H1,H2

∆(H′)uH′ (substitute values)

=
∑
i=1,2

∆(Hi)∆HiuH +
∑

H∈T ,H′ 6=H

∆(H′)uH′

= ∆(H)uH +
∑

H∈T ,H′ 6=H

∆(H′)uH′ (by Eq. (3.13))

=
∑
H′∈T

∆(H′)uH′ ,

so the implicit representation of x has not changed in value.

This claim can be generalized from H ∈ T to H ⊆ T ; we omit the full details. Next, we show
that the implicit representation of x by Eq. (5.2) is correctly maintained after reweight.

Claim 5.5. After the k-th call Reweight, the value of x is unchanged, while the value of
∆ is updated to ∆(k) which is a function of w(k).

Proof. We begin by observing that if H /∈ PT (H), then ∆(H)(new)
= ∆(H) by definition, as

there are no edges in TH with updated operators.

At a high level, we traverse the subtree PT (H) three rounds and perform Pushdown at
every node. During the first round, we simply push down the current uH values at each node
H. By Claim 5.4, we know this does not change the value of the implicit representation.

During the second round, we first initialize uH ← cz|FH at each node H ∈ PT (H), and
then perform Pushdown. Since Pushdown does not affect the value of the implicit
representation, we can use the initial change in uH to determine the overall change in the
implicit representation. Crucially, note that we perform Pushdown using the old tree
operator. So, the change in value of the implicit representation is given by

+c
∑

H∈PT (H)

∆(H)z|FH .

After the second round of Pushdown, we update the tree operator ∆ to ∆(new). Note that
∆(H) changes if and only if H ∈ PT (H), and in this case, uH = 0. So, updating the tree
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operator at this point induces a change in the value of the implicit representation of

c∆(new)z − c∆z = c
∑
H∈T

(
∆(H)(new) −∆(H)

)
z|FH = c

∑
H∈PT (H)

(
∆(H)(new) −∆(H)

)
z|FH .

During the third round, we initialize uH ← −cz|FH at each node H ∈ PT (H) and perform
Pushdown. Similar to the first round, the change to the value of the implicit representation
induced by this round is given by

−c
∑

H∈PT (H)

∆(H)(new)
z|FH .

The sum of the changes from each of the three rounds is exactly 0, so we conclude the value
of the implicit representation did not change.

Finally, we consider the other functions.

For Initialize, we see that by substituting the values assigned during Initialize and
applying the definition from Eq. (3.12), we have

c∆z +
∑
H∈T

∆(H)uH = x(init) + ∆z,

where ∆ is the initial ∆(init) and z is the initial z(init), which is exactly how we want to
initialize x.

For Move, we see the value of x is incremented by ∆(k)(z(k) − z(k−1)) after the step k. By
definition of z, we know z(k) − z(k−1) = ∇(k)v(k), so we conclude Move correctly makes the
update ∆(k)∇(k)v(k).

For Exact, we perform the computation
∑

H∈T ∆(H)(uH + z|FH ) using a sequence of
Pushdown’s down the tree, in order to calculate the value of x explicitly. The final answer
x is stored in parts in the uH ’s along the leaf nodes.

Note that by definition of the query complexity of ∆, Pushdown uses O(Q(1)) time. The
remaining runtimes are straightforward.

Finally, we combine Algorithm 9 and Algorithm 10 to get the overall data structure Main-
tainRep for maintaining x throughout PathFollowingLP as given by Eq. (5.1). We omit
the pseudocode implementation.
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Proof of Theorem 5.1. We use one copy of InverseTreeOp, which maintains z def
= cz(step) +

z(sum). We want to use TreeOp to maintain z which is given in two terms by Inverse-
TreeOp. To resolve this, we can simply use two copies of the data structure and track the
two terms in z separately; then we correctly maintain x. During PathFollowingLP, at
step k, we first call Reweight and Move in InverseTreeOp, followed by Reweight and
Move in each copy of TreeOp. The runtimes follow in a straightforward manner.

5.2 Dynamic vector approximation

In Section 2.7, we gave AbstractSolutionApproximation (Algorithm 6) for maintaining
an approximate vector x throughout PathFollowingLP, so that at every step,∥∥D1/2 (x− x)

∥∥
∞ ≤ δ,

where D is a dynamic diagonal scaling matrix that is a fixed entry-wise function of x.

In our data structure setting established in the previous section, we do not have full access to
the exact vector x at a step, therefore, we cannot implement FindLargeCoordinates in
Algorithm 6 naively. Instead, we make use of the tree operator T and limit access to x to two
types: accessing the JL-sketches of subvectors corresponding to nodes of T , and accessing
exact coordinates and constant-sized subvectors corresponding to leaf nodes.

In Section 5.2.1, we detect coordinates of x with large changes using a sampling technique on a
constant-degree tree, where Johnson-Lindenstrauss sketches of subvectors of x are maintained
at each node the tree. In Section 5.2.2, we show how to compute and maintain the necessary
collection of JL-sketches on the operator tree T ; in particular, we do this efficiently with only
an implicit representation of x. Finally, we put the two parts together in Section 5.2.3.

Recall we use the superscript (k) to denote the variable at the end of the k-th step of the
IPM; that is, D(k) and x(k) are D and x at the end of the k-th step. Step 0 is the state of
the data structure immediately after initialization.

5.2.1 From change detection to sketch maintenance

To implement FindLargeCoordinates(`) required for Algorithm 6 to find the set I(k)
` , we

repeatedly sampling a coordinate i with probability proportional to D
(k−1)
ii · |x(k)

i − x
(k−2`)
i |2,

among all coordinates i where xi has not been updated since 2` steps ago. With high
probability, we can find all i ∈ I

(k)
` in this way efficiently. To implement the sampling

procedure, we make use of a data structure based on segment trees [49] along with sketching
based on the Johnson-Lindenstrauss lemma.
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Formally, at a step k, we define the vector q ∈ Rm where qi
def
= D

(k−1)
ii (x

(k)
i − x

(k−2`)
i ) if xi

has not been updated after the k − 2`-th step, and qi = 0 otherwise. Our goal is precisely to
find all large coordinates of q.

Let T be a constant-degree rooted tree with m leaves, where leaf i represents coordinate qi.
For each node u ∈ T , we define E(u) ⊆ [m] to be set of indices of leaves in the subtree rooted
at u. We make a random descent down T , in order to sample a coordinate i with probability
proportional to q2

i . At a node u, for each child u′ of u, the total probability of the leaves
under u′ is given precisely by

∥∥q|E(u′)

∥∥2

2
. We can estimate this by the Johnson-Lindenstrauss

lemma using a sketching matrix Φ. Then we randomly move from u down to child u′ with
probability proportional to the estimated value. To tolerate the estimation error, when
reaching some leaf node representing coordinate i, we accept with probability proportional to
the ratio between the exact probability of i and the estimated probability of i. If i is rejected,
we repeat the process from the root again independently.

Lemma 5.6. Assume that ‖D(k)(x(k+1) − x(k))‖2 ≤ β for all IPM steps k. Let ρ < 1 be any
given failure probability, let ` be a fixed granularity, and let N def

= Θ(22`(β/δ)2 log2m log(m/ρ))

be the number of samples FindLargeCoordinates(`) takes. Then with probability ≥ 1− ρ,
during the k step, FindLargeCoordinates(`) (Section 5.2.1) finds the set I(k)

` correctly.
Furthermore, the while-loop in Line 8 happens only O(1) times in expectation per sample.

Proof. The proof is similar to Lemma 6.17 in [58]. We include it for completeness. For a set
S of indices, let IS be the m×m diagonal matrix that is one on S and zero otherwise.

We first prove that Line 15 breaks with probability at least 1
4
. By the choice of w, Johnson–

Lindenstrauss lemma shows that ‖ΦE(u)q‖2
2 = (1± 1

9η
)‖IE(u)q‖2

2 for all u ∈ T with probability
at least 1− ρ. Therefore, the probability we move from a node u to its child node u′ is given
by

P(u→ u′) =

(
1± 1

3η

)
‖IE(u′)q‖2

2∑
u′′ is a child of u ‖IE(u′′)q‖2

2

=

(
1± 1

3η

)
‖IE(u′)q‖2

2

‖IE(u)q‖2
2

.

Hence, the probability the walk ends at a leaf u ∈ T is given by

pu =

(
1± 1

3η

)η ‖Iuq‖2
2

‖q‖2
2

= (1± 1

3η
)η
∥∥q|E(u)

∥∥2

‖q‖2
2

.

Now, paccept on Line 15 is at least

paccept =

∥∥q|E(u)

∥∥2

2 · pu · ‖Φq‖2
2

≥
∥∥q|E(u)

∥∥2

2 · (1 + 1
3η

)η
‖q|E(u)‖2
‖q‖22

· ‖Φq‖2
2

≥ ‖q‖2
2

2 · (1 + 1
3η

)η‖Φq‖2
2

≥ 1

4
.
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Algorithm 11 Implementation of FindLargeCoordinates at step k using a tree
1: procedure FindLargeCoordinates(`)
2: D: diagonal matrix such that

Dii =

{
D

(k)
ii if xi has not been updated after the (k − 2`)-th step

0 otherwise.

3: q
def
= D(x(k) − x(k−2`)) . vector to sample coordinates from

4:

5: I ← ∅ . set of candidate coordinates
6: for N def

= Θ(22`(β/δ)2 log2m log(m/ρ)) iterations do
7: . Sample coordinate i of q w.p. proportional to q2

i by random descent down T to
a leaf

8: while true do
9: u← root(T ), pu ← 1

10: while u is not a leaf node do
11: Sample a child u′ of u with probability

P(u→ u′)
def
=

‖ΦE(u′)q‖2
2∑

child u′′ of u ‖ΦE(u′′)q‖2
2

. let ΦE(u)
def
= ΦIE(u) for each node u

12: pu ← pu ·P(u→ u′)

13: u← u′

14: end while
15: break with probability paccept

def
=
∥∥q|E(u)

∥∥2
/(2 · pu · ‖Φq‖2

2)

16: end while
17: I ← I ∪ E(u)

18: end for
19: return {i ∈ I : qi ≥ δ

2dlogme}.
20: end procedure
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On the other hand, we have that paccept ≤ ‖q‖22
2(1− 1

3η
)η‖Φq‖22

< 1 and hence this is a valid
probability.

Next, we note that u is accepted on Line 15 with probability

pacceptpu =

∥∥q|E(u)

∥∥2

2 · ‖Φq‖2
2

.

Since ‖Φq‖2
2 remains the same in all iterations, this probability is proportional to

∥∥q|E(u)

∥∥2.
Since the algorithm repeats when u is rejected, on Line 17, u is chosen with probability
exactly

∥∥q|E(u)

∥∥2
/‖q‖2.

Now, we want to show the output set is exactly {i ∈ [n] : |qi| ≥ δ
2dlogme}. Let S denote the

set of indices where x did not update between the (k − 2`)-th step and the current k-th step.
Then

‖q‖2 = ‖IS(D(k))1/2(x(k) − x(k−2`))‖2

≤
k−1∑

i=k−2`

‖IS(D(k))1/2(x(i+1) − x(i))‖2

=
k−1∑

i=k−2`

‖IS(D(i+1))1/2(x(i+1) − x(i))‖2

≤
k−1∑

i=k−2`

‖(D(i+1))1/2(x(i+1) − x(i))‖2

≤ 2`β,

where we used ISD(i+1) = ISD(k), because xi changes whenever Dii changes at a step. Hence,
each leaf u is sampled with probability at least

∥∥q|E(u)

∥∥2
/(2`β)2. If |qi| ≥ δ

2dlogme , and
i ∈ E(u) for a leaf node u, then the coordinate i is not in I with probability at most(

1−
∥∥q|E(u)

∥∥2

(2`β)2

)N

≤
(

1− 1

22`+2(β/δ)2 dlogme2

)N
≤ ρ

m
,

by our choice of N . Hence, all i with |qi| ≥ δ
2dlogme lies in I with probability at least 1− ρ.

This proves that the output set is exactly I(k)
` with probability at least 1− ρ.

Remark 5.7. In Section 5.2.1, we only need to compute ‖ΦE(u)q‖2
2 for O(N) many nodes

u ∈ T . Furthermore, the randomness of the sketch is not leaked and we can use the same
random sketch Φ throughout the algorithm. This allows us to efficiently maintain ΦE(u)q for
each u ∈ T throughout the IPM.
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5.2.2 Sketch maintenance

In FindLargeCoordinates in the previous subsection, we assumed the existence of a
constant degree sampling tree T , and for the dynamic vector q, the ability to access ΦE(u)q

at each node u ∈ T and q|E(u) at each leaf node u.

In this section, we consider when the required sampling tree is the operator tree T supporting
a tree operator ∆, and the vector q is x def

= ∆z +
∑

H∈T ∆(H)uH , where each of ∆, z and
the uH ’s undergo changes at every IPM step. We present a data structure that implements
two features efficiently on T :

• access x|E(H) at every leaf node H,

• access ΦE(H)x at every node H, where ΦE(H) is Φ restricted to columns given by E(H).

Lemma 5.8. Let T be a constant degree rooted tree with height η supporting tree operator ∆

with query complexity Q. Let w = Θ(η2 log(m
ρ

)), and let Φ ∈ Rw×m be a JL-sketch matrix.
Then MaintainSketch (Algorithm 12) is a data structure that maintains Φx, where x is
implicitly represented by

x
def
= ∆z +

∑
H∈T

∆(H)uH .

The data structure supports the following procedures:

• Initialize(operator tree T , implicit x): Initialize the data structure and compute the
initial sketches in O(Q(wm)) time.

• Update(H ⊆ T ): Update all the necessary sketches in O(w ·Q(η|H|)) time, where H
is the set of all nodes H where uH or ∆H changed.

• Estimate(H ∈ T ): Return ΦE(H)x.

• Query(H ∈ T ): Return x|E(H).

If we call Query on N nodes, the total runtime is O(Q(wηN)).

If we call Estimate along a sampling path (by which we mean starting at the root, calling
estimate at both children of a node, and then recursively descending to one child until reaching
a leaf), and then we call Query on the resulting leaf, and we repeat this N times with no
updates during the process, then the total runtime of these calls is O(Q(wηN)).

We note that ∆z =
∑

H∈T ∆(H)z|FH . For simplicity, it suffices to give the algorithm for
sketching the simpler x def

=
∑

H∈T ∆(H)uH .
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Algorithm 12 Data structure for maintaining Φx, Part 1
1: data structure MaintainSketch
2: private : member
3: T : rooted constant degree tree, where at every node H, there is
4: S(H) ∈ Rw×|FH∪∂H| : sketched subtree operator Φ∆(H)

5: t(H) ∈ Rw : sketched vector Φ
∑

H′∈TH ∆(H′)uH′

6: Φ ∈ Rw×m : JL-sketch matrix
7: ∆ ∈ Rm×n : dynamic tree operator on T
8: uH at every H ∈ T : dynamic vectors
9:

10: procedure Initialize(tree T , Φ ∈ Rw×m, tree operator ∆, uH for each H ∈ T )
11: Φ← Φ, T ← T ,∆←∆,uH ← uH for each H ∈ T
12: S(H) ← 0, t(H) ← 0 for each H ∈ T
13: Update(V (T ))
14: end procedure
15:

16: procedure Update(H def
= set of nodes admitting implicit representation changes)

17: for H ∈ PT (H) going up the tree level by level do
18: S(H) ←

∑
child D of H S(D)∆D

19: t(H) ← S(H)uH +
∑

child D of H t
(D)

20: end for
21: end procedure
22:

23: procedure SumAncestors(H ∈ T )
24: if Update has not been called since the last call to SumAncestors(H) then
25: return the result of the last SumAncestors(H)

26: end if
27: if H is the root then return 0

28: end if
29: return ∆H(uP + SumAncestors(P )) . P is the parent of H
30: end procedure



108

Algorithm 13 Data structure for maintaining Φx, Part 2
1: data structure MaintainSketch
2: procedure Estimate(H ∈ T )
3: Let y be the result of SumAncestors(H)

4: return S(H)y + t(H)

5: end procedure
6:

7: procedure Query(leaf H ∈ T )
8: return uH + SumAncestors(H)

9: end procedure

Proof. Let us consider the correctness of the data structure, starting with the helper function
SumAncestors. We implement it using recursion and memoization as it is crucial for
bounding subsequent runtimes.

Claim 5.9. SumAncestors(H ∈ T ) returns
∑

ancestor A of H ∆H←AuA.

Proof. At the root, there are no ancestors, hence we return the zero matrix. When H is not
the root, suppose P is the parent of H. Then we can recursively write

∑
ancestor A of H

∆H←AuA = ∆H

(
uP +

∑
ancestor A of P

∆P←AuA

)
.

The procedure implements the right hand side, and is therefore correct.

Assuming we correctly maintain S(H) def
= Φ∆(H) and t(H) def

= Φ
∑

H′∈TH ∆(H′)uH′ at every node
H, Estimate and Query return the correct answers by the tree operator decomposition
given in Lemma 3.41.

For Update, note that if a node H is not in H and it has no descendants in H, then by
definition, the sketches at H are not changed. Hence, it suffices to update the sketches only
at all nodes in PT (H). We update the nodes from the bottom of T upwards, so that when we
are at a node H, all the sketches at its descendant nodes are correct. Therefore, by definition,
the sketches at H is also correct.

Now we consider the runtimes:
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Initialize: It sets the sketches to 0 in O(wm) time, and then calls Update to update
the sketches everywhere on T . By the correctness runtime of Update, this step is correct
and runs in Õ(Q(wm)) time.

Update(set of nodes H admitting implicit representation changes): First note that
|PT (H)| ≤ η|H|. For each node H ∈ H with children D1, D2, Line 18 multiplies each row of
S(D1) with ∆(D1,H), each row of S(D2) with ∆D2 , and sums the results. Summing over w-many
rows and over all nodes in PT (H), we see the total runtime of Line 18 is O(Q(wη|H|)).

Line 19 multiply each row of S(H) with a vector and then performs a constant number of
additions of w-length vectors. Since S(H) is computed for all H ∈ PT (H) in O(Q(wη|H|))
total time, this must also be a bound on their number of total non-zero entries. Since each
S(H) is used once in Line 19 for a matrix-vector multiplication, the total runtime of Line 19
is O(Q(wη|H|)).

All other lines are not bottlenecks.

Overall Estimate and Query time along N sampling paths: We show that if we
call Estimate along N sampling paths each from the root to a leaf, and we call Query on
the leaves, the total cost is O(Q(wηN)):

Suppose the set of nodes visited is given by H, then |H| ≤ ηN . Since there is no update,
and Estimate is called for a node only after it is called for its parent, we know that
SumAncestors(H) is called exactly once for each H ∈ H. Each SumAncestor(H) multi-
plies a unique edge operator ∆(H,P ) with a vector. Hence, the total runtime of SumAnces-
tors is Q(|H|).

Finally, each Query applies a leaf operator to the output of a unique SumAncestors call, so
the overall runtime is certainly bounded by O(Q(|H|)). Similarly, each Estimate multiplies
S(H) with the output of a unique SumAncestors call. This can be computed as w-many
vectors each multiplied with the SumAncestors output. Then two vectors of length w are
added. Summing over all nodes in H, the overall runtime is O(Q(w|H|)) = O(Q(wηN)).

Query time on N leaves: Since this is a subset of the work described above, the runtime
must also be bounded by O(Q(wηN)).



110

5.2.3 Overall approximation guarantees

We combine AbstractSolutionApproximation and Theorem 2.26 with implementations
from the previous two sections for the overall data structure:

Theorem 5.10 (Approximation scheme with tree operator). Let 0 < ρ < 1 be a failure
probability, and let δ be an error tolerance. Suppose ∆ ∈ Rm×n is a tree operator with query
complexity Q, supported on a constant-degree tree T with height η. There is a data structure
which maintains an approximation x of x throughout PathFollowingLP where D is a
diagonal scaling matrix that is a fixed entrywise function of x. Across all steps, x,D in the
data structure satisfy ‖D(x− x)‖∞ ≤ δ with probability 1− ρ.

Furthermore, suppose ‖D(k−1)(x(k) − x(k−1))‖2 ≤ β for all steps k. Then, O(22`(β/δ)2 log2m)

coordinates of x are updated every 2` steps for each ` ≥ 0. Over N total steps, the total cost
of the data structure is

Õ(η3(β/δ)2 log3(mN/ρ))

(
Q(m) +

N∑
k=1

Q(S(k)) +

logN∑
`=0

N

2`
·Q(22`)

)
, (5.3)

where S(k) is the number of nodes H at which the implicit representation of x changed at step
k.

We omit the pseudocode and give only the algorithm descriptions.

Proof. x is maintained by MaintainRep. We create O(logm) copies of MaintainSketch
as given in Lemma 5.8, so that for each 0 ≤ ` ≤ O(logm), we have one copy sketch`,x which
maintains sketches of ΦDx(k) at step k, and one copy sketch` which maintains sketches of
ΦDx(k−2`) at step k ≥ 2`, where D is defined so Di,i = Di,i if xi has not been updated after
the k − 2`-th step, and Di,i = 0 otherwise (as needed in Section 5.2.1). Note that D can be
absorbed into the tree operator in the implicit representation of x, so Lemma 5.8 does indeed
apply.

To access skeches of the vector q def
= D(x(k)−x(k−2`)) as needed in FindLargeCoordinates

in Section 5.2.1, we can simply access the corresponding sketch in sketch`,x and sketch`,
and then take the difference.

We now describe each procedure, and then prove their correctness and runtime.

Initialize: We initialize the O(logm) copies of MaintainSketch in O(Q(wm) logm)

time by Lemma 5.8.
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Update(x(new),D(new)): To implement Update, it suffices to update all the sketching data
structures. Let us fix `, and consider the update time for sketch`,x and sketch`.

Theorem 2.26 shows there are O(22`(β/δ)2 log2m)-many coordinate updates to x every 2`

steps. Since D is a function of x coordinate-wise, xi = x
(k−1)
i for all i where D

(k)
ii 6= D

(k−1)
ii .

The diagonal matrix D is the same as D, except Dii is temporarily zeroed out for 2` steps
after xi changes at a step. So, the overall number of coordinate changes to D is O(22`)-many
every 2` steps.

Let S(k) denote the number of nodes H where ∆H or uH in the implicit representation of x
changed at step k. Additionally, since the sketching data structures maintain some variant
of Dx (where D is viewed as absorbed in the tree operator), every coordinate change in D

implies an edge operator update. Now we apply Lemma 5.8 to conclude that the total time
for all Update calls for sketch`,x and sketch` over N steps is:

O(1) ·

(
N∑
k=1

Q
(
wηS(k)

)
+
N

2`
·Q(wη · 22`)

)
≤ O(wη) ·

(
N∑
k=1

Q(S(k)) +
N

2`
·Q(22`)

)
.

We then sum this over all ` to get the total update time for the sketching data structures.

Approximate: There are two operations to be implemented in the subroutine Find-
LargeCoordinates(`): Accessing ΦE(u)q at a node u, and accessing q|E(u) at a leaf node
u. For the first, we call sketch`,x.Estimate(u)− sketch`.Estimate(u). For the second, we
call sketch`,x.Query(u)− sketch`.Query(u).

To set xi as x
(k)
i for a single coordinate at step k, we find the leaf node H containing the

edge e, and call sketch0,x.Query(H). This returns the sub-vector x(k)|E(H), from which we
can extract x(k)

i and set xi to be the value. This line is not a bottleneck in the runtime.

We compute the total runtime over N Approximate calls. For every ` ≥ 0, we call
FindLargeCoordinates(`) once every 2` steps, for a total of N/2` calls. In a single
call, M`

def
= Θ(22`(β/δ)2 log2m log(mN/ρ)) sampling paths are explored in the sketch` and

sketch`,x data structures by Lemma 5.6, where a sampling path correspond to one iteration
of the while-loop. This takes a total of O(Q(wηM`)) time by Lemma 5.8. Therefore, for every
fixed `, the total time for all FindLargeCoordinates(`) calls is

N

2`
·O (Q(wηM`)) .

The total time for all LargeCoordinates calls is obtained by summing over all values of
` = 0, . . . , logN . To achieve overall failure probability at most ρ, it suffices to set the failure
probability of each call to be O(ρ/N).
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We sum up the initialization time, update and approximate time for all values of ` =

0, . . . , logN and over N total IPM steps, to get the overall runtime of the data structure:

Õ(Q(wm)) +O(wη)
N∑
k=1

Q(S(k)) +O(wη)

logN∑
`=0

N

2`
(
Q(22`) +Q(M`)

)
= Õ(η3(β/δ)2 log3(mN/ρ))

(
Q(m) +

N∑
k=1

Q(S(k)) +

logN∑
`=0

N

2`
·Q(22`)

)
.

5.3 Main IPM data structure theorem

We are now ready to state and prove the main result in this framework.

Theorem 5.11 (RIPM framework). Consider an LP of the form

min
x∈P

c>x where P = {Ax = b, l ≤ x ≤ u} (5.4)

where A ∈ Rn×m. For any vector w, let Pw
def
= W1/2A>(AWA>)−1AW1/2, and suppose

there exists dynamic tree and inverse tree operators ∆ and ∇ dependent on w, such that
W1/2Pw = ∆∇. Let U be the update complexity of ∆ and ∇, and let Q be their query
complexity. Let r and R = ‖u− l‖2 be the inner and outer radius of P, and let L = ‖c‖2.
Then, there is a data structure to solve Eq. (5.4) to εLR accuracy with probability 1− 2−m in
time

Õ

η4
√
m log(

R

εr
) ·

1
2

logm∑
`=0

U(22`) +Q(22`)

2`

 .

Proof. We implement PathFollowingLP using the data structures from the previous
chapters, and bound the cost of each operations of the data structures. For simplicity, we only
discuss the primal variables in this proof, but the slack variables are analogous. We use one
copy of MaintainRep to maintain x, and one copy of MaintainApprox to maintain x. At
each step, we perform the implicit update of x using Move and update w using Reweight
in MaintainRep. We construct the explicit approximations x using Approximate in
MaintainApprox.

Theorem 5.10 shows that throughout the IPM, for each ` ≥ 0, there are 22` coordinate
changes to x every 2` steps. Since w is a function of x coordinate-wise, there are also 22`

coordinate changes in w every 2` steps. Similarly, we observe that v is defined as a function
of x and s coordinate-wise, so there are O(22`) coordinate changes to v every 2` steps. Then
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Theorem 5.1 shows that the total runtime over N steps for the MaintainRep data structure
is

Õ(U(m) +Q(m)) + Õ

(
logN∑
`=0

N

2`
·
(
U(η · 22`) +Q(η · 22`)

))
. (5.5)

Theorem 5.10 shows that the total runtime over N steps for MaintainApprox is

Õ(η3(β/δ)2 log3(mN/ρ))

(
Q(m) +

N∑
k=1

Q(S(k)) +

logN∑
`=0

N

2`
·Q(22`)

)
, (5.6)

where the variables are defined as in the theorem statement. By examining Theorem 5.1,
we see that when a coordinate of w or v changes, the implicit representation of x admits
updates at O(η)-many nodes. Combined with the concavity of Q, we can bound

N∑
k=1

Q(S(k)) ≤ O(η) ·
logN∑
`=0

N

2`
·Q(22`).

Theorem 2.24 guarantees that there are N =
√
m logm log(mR

εr
) total IPM steps, and at each

step k, we have
∥∥∥W(k−1)−1/2

(x(k) − x(k−1))
∥∥∥

2
=
∥∥v(k) −Pwv

(k)
∥∥

2
≤ O( 1

logm
), so we can set

β = O( 1
logm

). By examining the algorithm, we see it suffices to set δ = O( 1
logm

). We choose
the failure probability ρ to be appropriately small, e.g. 2−m. Finally, we conclude that the
overall runtime of the IPM framework is

Õ

η4
√
m log(

R

εr
) ·

1
2

logm∑
`=0

U(22`) +Q(22`)

2`

 ,

where the terms for initialization times have been absorbed.
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Chapter 6

Structured linear programming

In this chapter, we finally present the main results for structured linear programming. We
apply Lemma 4.5 to the separator tree for each setting get the complexity of the tree operator,
which we combine with Theorem 5.11 to conclude the overall IPM runtimes.

6.1 Separable linear programs

Theorem 6.1. Given a linear program min {c>x : Ax = b, l ≤ x ≤ u}, where A ∈ Rn×m

is a full-rank matrix with n ≤ m, suppose the dual graph GA is O(nα)-separable with α ∈ [0, 1],
and a balanced separator is computable in T (n) time.

Suppose that r is the inner radius of the polytope, namely, there is x such that Ax = b and
l+ r ≤ x ≤ u− r. Let L = ‖c‖2 and R = ‖u− l‖2. Then, for any 0 < ε ≤ 1/2, we can find
a feasible x with high probability such that

c>x ≤ min
Ax=b, l≤x≤u

c>x+ ε · LR,

in time
Õ
(
(m+m1/2+2α) · log(R/(rε)) + T (n)

)
.

Proof. We consider the cases when α = 1 and α < 1 separately.

All hypergraphs are trivially n-separable with max hyperedge size ρ = n. In this case,
let S be the separator tree consisting of simply one node representing GA, which is a
(1, 1/2, n)-separator tree. By Lemma 4.5, the tree operator data structure can be initialized
in O(mω) time; the query complexity is Q(K) = O(nK + n2), and the update complexity is
U(K) = O(nω−1K + n2Kω−2).

We apply Theorem 5.11 to get the overall runtime:

Õ

√m log(
R

εr
) ·

1
2

logm∑
`=0

n22` + n2 + n222`(ω−2)

2`

 = Õ

(√
mn2 log(

R

εr
)

)
.
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If GA is nα-separable for α < 1, then by Lemma 3.14, GA admits a (α, b, cnα)-separator
tree computable in Õ(n) time. In this case, ρ = O(1), and η = O(log1/b n). Plugging the
parameters into Lemma 4.5, we get the following tree operator runtimes:

• The data structure can be initialize in O (m+ nαω(1 + n1−αω)) ≤ O(m+mαω) time.

• The query complexity is Q(K) ≤ O(K + n2α(1 +K1−2α)).

• The update complexity is

U(K) ≤ O
(
K + n2α min{K,nα}ω−2 + n2αK1−2α + n

α(ω−1)
1−α K

1−αω
1−α · 1K≥nα

)
.

We apply Theorem 5.11 to get the overall runtime:

Õ

(√
m log(

R

εr
)

)
·

1
2

logm∑
`=0

22` + n2α + nαω · 122`>nα + n2α2(1−2α)2` + n
α(ω−1)
1−α 2

1−αω
1−α 2` · 122`>nα

2`

= Õ

(√
m log(

R

εr
)

)
·
(√

m+ n2α + nαω−
α
2 + n2αm1−2α− 1

2 + n
α(ω−1)
1−α

(
n
α(1−αω)

1−α −α
2 +m

1−αω
1−α −

1
2

))
= Õ

((
m+m

1
2

+2α
)
· log(

R

εr
)

)
,

where in the last step, we used the fact αω − α
2
≤ 2α.

6.2 k-commodity flow

An immediate application of Theorem 6.1 is a faster algorithm for solving the fractional
k-commodity flow problem on planar graphs to high accuracy. For general sparse graphs,
an Õ((km)ω) time algorithm for this problem follows by the recent linear program solvers
that run in matrix multiplication time [44, 29]. It is known that solving the k-commodity
flow problem is as hard as linear programming [91, 55], suggesting that additional structural
assumptions on the input graph are necessary to obtain faster algorithms. As shown in
the theorem below, our result achieves a polynomial speed-up when the input graph is
planar.

Theorem 6.2. Given a planar graph G = (V,E) on n vertices and m edges, with edge-vertex
incidence matrix B, integer edge capacities u ∈ Rm

≥0, integer edge costs c1, . . . , ck ∈ Rm

and integer demands d1, . . . ,dk ∈ Rm for each commodity, we can solve the minimum-cost
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k-multicommodity flow problem on G, equivalent to the following linear program,

min
k∑
i=1

c>i fi

s.t B>fi = di ∀i ∈ [k]
k∑
i=1

fi ≤ u

fi ≥ 0 ∀i ∈ [k]

(6.1)

to ε accuracy in Õ(k2.5m1.5 log(M/ε)) time, where M is an upper on the absolute values of
u, c,d.

Let G = (V,E) denote the planar graph for the original problem, with V = {v1, . . . , vn}
and E = {e1, . . . , em}. First, we write the LP in Eq. (6.1) in standard form by adding slack
variables s ∈ RE:

min
k∑
i=1

c>i fi

s.t B>fi = di ∀i ∈ [k]
k∑
i=1

fi + s = u

fi ≥ 0 ∀i ∈ [k]

s ≥ 0

(P ′)

Let A denote the full constraint matrix of P ′. Then

A =


B> 0 · · · 0 0

0 B>
...

...
. . .

0 0 · · · B> 0

I I · · · I I

 ∈ R(kn+m)×(k+1)m (6.2)

where the top left part of A contains k copies of B> in block-diagonal fashion, and all the
identity matrices are of dimension m×m. The dual graph of B> is precisely G. Let GA be
the dual graph of A.

First, we describe GA: It contains k independent copies of the vertices V , which we label
with V i = (vi1, . . . , v

i
n), so that vij is a copy of vj ∈ V . Additionally, GA contains m vertices

u1, . . . , um, where the vertex ui is identified with edge ei ∈ E. For each edge ei ∈ E with



117

endpoints vi1 , vi2 , there are k hyper-edges in GA of the form {v`i1 , v
`
i2
, ui} for ` = 1, . . . , k.

Additionally, there are m hyper-edges f1, . . . , fm where fi contains only the vertex ui.

Next, we show how to construct an appropriate separator tree efficiently.

Claim 6.3. GA admits a (1
2
, b, kn1/2)-separator tree that can be computed in O(kn log n)

time.

Proof. Let G be the original planar graph which is
√
n-separable, and let S̃ be the (1

2
, b, n1/2)-

separator tree for G constructed using Lemma 3.14 in O(n log n) time by [122]. We show how
to construct a (1

2
, b, kn1/2)-separator tree S for GA based on S̃. Without loss of generality,

we ignore the hyper-edges f1, . . . fm in this construction.

Intuitively, S will have the same tree structure as S̃, but each node will be larger by a factor
of O(k) due to the k copies of G in GA. For each H̃ ∈ S̃, we construct a corresponding
H ∈ S as follows: if vj ∈ H̃, then vij ∈ H for all i ∈ [k]; if ej ∈ E(H̃), i.e. both endpoints of
ej are in H̃, add uj to H. Since the k copies v1

j , . . . , v
k
j are always grouped together, we will

refer to them together as vj in GA as well.

Let us show that this is indeed a (1
2
, b, kn1/2)-separator tree. Suppose H is a node with

children D1 and D2 in S, corresponding to nodes H̃, D̃1, D̃2 in S̃. Let S(H)
def
= V (D1)∩V (D2),

then vj ∈ S(H) iff vj ∈ S(H̃), and uj ∈ S(H) iff ej ∈ E(S(H̃)) for all values of j. It is
straightforward to see that S(H) is indeed a separator of H. When it comes to the set of
boundary vertices, we see vj ∈ ∂H iff vj ∈ ∂H̃, and if uj ∈ ∂H with vj1 , vj2 being the two
endpoints of ej , then vj1 , vj2 are both in ∂H. Since G is a planar graph, the number of edges in
H̃ is on the same order as the number of vertices, so we conclude that |V (H)| ≤ O(k) · |V (H̃)|,
and similarly, |FH ∪ ∂H| ≤ O(k) · |FH̃ ∪ ∂H̃|. Since node sizes in S have increased by a factor
of O(k) compared to S̃, we conclude S is a (1

2
, b, kn1/2)-separator tree.

Finally, we can compute S̃ for G in O(n log n) time, so we can compute S in O(kn log n)

time.

We reduce our problem to minimum cost multi-commodity circulation problem in order to
establish the existence of an interior point in the polytope, before invoking the RIPM in
Theorem 2.24. For each commodity i ∈ [k], we add extra vertices si and ti. Let di be the
demand vector of the i-th commodity. For every vertex v with di,v < 0, we add a directed
edge from si to v with capacity −di,v and cost 0. For every vertex v with di,v > 0, we add a
directed edge from v to ti with capacity di,v and cost 0. Then, we add a directed edge from
ti to si with capacity 4kmM and cost −4kmM . The modified graph G′ has only 2k extra
vertices of the form si and ti compared to GA, so we can construct a (1

2
, b, kn1/2+2k)-separator
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tree for G′ based on the (1
2
, kn1/2)-separator tree for GA, where we include the extra vertices

at every node of the tree.

To show the existence of the interior point, we remove all the directed edges that no single
commodity flow from si to ti can pass for any i ∈ [k]. This can be done by running BFS
k times, which takes O(km) time. For the interior point f , we construct this finding a
circulation f (e) that passing through e and si, ti for some i with flow value 1/(10km) for all
the remaining edge e. Then, since the capacities are integers, we find a feasible f , s with
value at least 1/(10km). This shows the inner radius r of the polytope is at least 1/(10km).
For the L and R, we note we can bound it by O(kmM).

Let A′ be the constraint matrix of the reduced problem with dual graph G′. The RIPM in
Theorem 2.24 invokes the subroutine PathFollowing twice. In the first run, we make a new
constraint matrix by concatenating A′ three times. One can check that the dual graph is G′

with each edge duplicated three times, so the corresponding separator tree is straightforward
to construct.

Now, we bounding the running time. The tree operator complexities are similar to the
analysis in the previous section with an additional factor of k in the expression for λ. The
initialization time is O(km+ (kn1/2)ω). The query complexity is Q(K) = O(K + k2n). After
simplifying, the update complexity is

U(K) = K +

{
k2nKω−2 if K ≤ kn1/2

(kn1/2)ω else.

Note that the number of variables is km. Plugging our choice of L, R, and r, by Theorem 5.11,
the total runtime simplifies to

Õ
(
k2.5m1.5 log(M/ε)

)
.

6.3 Low-treewidth linear programs

Theorem 6.4. Suppose we have a linear program with the same setup as Theorem 6.1, and
we are given a tree-decomposition of the dual graph GA

1 of width τ . Then we can solve the
linear program in time

Õ(mτ 2 log(R/(εr))) or Õ(mτ (ω+1)/2 log(R/(εr))).

1We can view the hypergraph GA as a graph, where we interpret each hyper-edge as a clique, and consider
its treewidth as usual.
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Lemma 3.15 shows how to construct a separator tree for GA. Since the resulting tree is
binary, so there are at most 2i nodes at level i. Since there are L = O(n/τ)-many leaves, the
height η is at most η ≤ log2(n/τ). The boundary of a node H is contained in the union of
balanced separators over its ancestors, so |FH ∪ ∂H| ≤ τη ≤ O(τ log n). The max hyperedge
size of GA is ρ = τ .

Using these values, we simplify the complexities in Lemma 4.5: The initialization time for the
tree operator data structure is Õ (τω−1m+ τω (1 + n/τ)) = Õ(τω−1m). The query complexity
of ∆ is Q(K) = Õ (τK + τ 2 min{K,L}). The update complexity of ∆ is

U(K) ≤ τω−1K +

{
τ 2K if K ≤ n

τω if K > n

Finally, we apply Theorem 5.11 to get the overall runtime, which is clearly bounded by

Õ

(√
m log(

R

εr
)

)
·

1
2

logm∑
`=0

τ 222`

2`
= Õ

(
mτ 2 log(R/(εr))

)
.

To obtain the faster runtime given in [80], we use the data structure restarting trick: Recall
MaintainApprox guarantees there are 22`-many coordinate updates to x and s every 2`

steps, i.e. the number of coordinate updates grows superlinearly with respect to the total
number of steps taken. By reinitializing MaintainApprox with the exact solution once in a
while, we limit the total number of coordinate updates. In the proof of Theorem 5.11, we
showed that running M steps of the RIPM takes

Õ

(
U(m) +Q(m) + η4M log(

R

εr
) ·

logM∑
`=0

U(22`) +Q(22`)

2`

)
time, where U(m) +Q(m) is the time to initialize the data structures and obtain the final
exact solutions. There are N =

√
m logm log(mR

εr
)-many total IPM steps, and we reinitialize

the data structures every M steps. Then the total running time is (ignoring the big-O
notation and log factors)

N

M

(
U(m) +Q(m) +M

logM∑
`=0

U(22`) +Q(22`)

2`

)
=

√
m

M

(
τω−1m+ τ 2M2

)
.

The expression is minimized by taking M =
√
mτ

ω−3
2 , which gives an overall runtime of

Õ
(
mτ (ω+1)/2 log(R/(εr))

)
.
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6.4 Convex generalization

Since our robust IPM works for general convex sets, the results in this chapter naturally
generalize to the convex optimization setting. For the sake of this discussion, consider it for
the bounded-treewidth case; the corresponding theorem would be:

Theorem 6.5. Given a convex program

min
Ax=b,x[i]∈Ki for i∈[m]

c>x (6.3)

where A ∈ Rn×d is a full rank matrix with n ≤ d and Ki ⊂ Rdi are convex sets, with∑m
i=1 di = d. We identify the columns of A in blocks, such that block i contains the di columns

corresponding to xi. We define the generalized dual graph GA to be the graph with vertices
set {1, · · · d}, such that ij ∈ E(GA) if there is a block r such that Ai,r 6= 0 and Aj,r 6= 0. We
define the product convex set K = Πm

i=1Ki. Suppose that

• we are given a tree decomposition of GA with width τ ,
• R is the diameter of the set K,
• There exists z such that Az = b and B(z, r) ⊂ K,
• di = O(1) for all i ∈ [m],
• we are given initial points xi ∈ Rdi such that B(xi, r) ⊂ Ki for each i,
• we can check if y ∈ Ki in O(1) time for all i ∈ [m].

Then, for any 0 < ε ≤ 1/2, we can find x ∈ K with Ax = b such that

c>x ≤ min
Ax=b,x∈K

c>x+ ε · ‖c‖2 ·R

in expected time
Õ(d · τ 2 log(R/r) log(R/(rε))).

Remark 6.6. The proofs for the convex program and the linear program are almost identical.
Any operation involving the entry A[i, j] in the linear program setting is generalized to
operations on the 1× dj submatrix of A from row i and block j. Since each block has size
O(1), the overall runtime relating to all matrix operations is maintained. We analyze our
interior point method directly using this generalized formulation in this paper; the linear
programming formulation follows as a special case.

This natural convex generalization in fact captures a large number of problem formulations.
We illustrate with one example from signal processing, the fused lasso model for denoising [159]:
Given a 1-D input signal u1, u2, · · · , un, find an output x that minimizes the potential

V (x) =
n∑
i=1

(xi − ui)2 + λ
n−1∑
i=1

|xi+1 − xi| ,
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where the first term restricts the output signal to be close to the input, and the second term
controls the amount of irregularity, and λ is the regularization parameter. To relate it back
to our problem Eq. (6.3), we consider a generalized formulation: Given a family of convex
functions φ1, . . . , φN of x def

= (x1, . . . ,xd), where for each i, the function φi(x) = φi(xSi) only
depends on the variables {xj : j ∈ Si} for some subset Si ⊆ [d], we want to solve the
problem

min
x∈Rd

N∑
i=1

φi(xSi). (6.4)

By creating extra variables yi,j for all i ∈ [d] and j ∈ Si, we can write the problem as
min

∑
i ti, subjected to yi,j = xj and ti ≥ φi(yi,j) for all i and all j ∈ Si. The inequality

constraints is equivalent to requiring that (t,y) lie in the convex set {(t,y) : ti ≥ φi(yi,j)}.
This is exactly in the form of Eq. (6.3). The dual graph GA of this problem is closely related
to the intersection graph GI of the set family {Si}i∈N : Specifically, each set of constraints
yi,j = xj corresponds to |Si| many vertices in GA, and contracting each such set into one
vertex produces GI . Hence, we have that the treewidth tw(GA) of this convex program is at
most the treewidth of GI . For the denoising problem above, the intersection graph is in fact
close to a path and has constant treewidth. Therefore, our result shows that this problem can
be solved in nearly-linear time, without relying on the specific formula or structure.
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Chapter 7

Min-cost flow

Given a graph G = (V,E) on n vertices and m edges, with edge-vertex incidence matrix B,
vertex demands d, edge costs c, and edge capacity bounds [l,u], the min-cost flow problem
on G can be formulated as

min c>f

s.t. B>f = d

l ≤ f ≤ u.
(7.1)

Because the constraint matrix is the incidence matrix of a graph, we can apply additional
techniques to speed up our data structures for LP solvers. In particular, we use the same
framework as previous chapters consisting of the tree operator and Cholesky factorization,
but in the recursive Schur complements, we make additional use of sparsification.

Before we proceed, we introduce the fast Laplacian solver as a black box.

Theorem 7.1 ([153]). There is a randomized algorithm which is an ε-approximate SDD-
system solver. Given a symmetrical diagonally-dominant (SDD) matrix L ∈ Rn×n with O(m)

non-zeros, d ∈ Rn, and ε ∈ (0, 1), it finds x such that∥∥x− L−1d
∥∥

L
≤ ε

∥∥L−1d
∥∥

L

in O(m · poly(log log n) log(1/(ελ2(L))) time, where λ2(L) is the second smallest eigenvalue
of L. Moreover, the solver guarantees that x = Zd, where Z is an n× n-matrix depending
only on L and ε, is a symmetric linear operator satisfying Z ≈ε L−1, and has the same image
as L−1 [168, Section 3.4 and Theorem 9.2].

7.1 Problem reduction

In this section, we show how to write down the planar min-cost flow problem as a linear
program of the form

(Primal) = min
B>f=0, l≤f≤u

c>f and (Dual) = min
By+s=c

∑
i

min(lisi,uisi),



123

where B ∈ Rm×n is an edge-vertex incidence matrix of the graph, f is the flow and s is the
slack (or adjusted cost vector). We will run PathFollowingLP on the above formulation.
From the returned solution, we postprocess to produce an optimal flow.

First, we add extra vertices s and t to the input graph. For every vertex v with dv < 0,
we add a directed edge from s to v with capacity −dv and cost 0. For every vertex v with
dv > 0, we add a directed edge from v to t with capacity dv and cost 0. Then, we add a
directed edge from t to s with capacity 4nM and cost −4nM . The cost and capacity on the
t→ s edge are chosen such that the min-cost flow problem on the original graph is equivalent
to the min-cost circulation on this new graph. Namely, if the min-cost circulation in this new
graph satisfies all the demand dv, then by ignoring the flow on the new edges we obtain the
min-cost flow in the original graph.

Since the IPM requires an interior point in the polytope, we first remove all directed edges e
through which no flow from s to t can pass. To do this, we simply check, for every directed
edge e = (v1, v2), if s can reach v1 and if v2 can reach t. This can be done in O(m) time by a
BFS from s and a reverse BFS from t. With this preprocessing, we write the minimum cost
circulation problem as the following linear program

min
B>f=0, lnew≤f≤unew

(cnew)>f

where B is the signed incidence matrix of the new graph, cnew is the new cost vector, and
lnew,unew are the new capacity constraints. This LP is the input to the interior point method;
we call the new graph the IPM input graph.

Now, we bound the parameters L,R, r in Theorem 2.24. Clearly, L = ‖cnew‖2 = O(Mm) and
R = ‖unew − lnew‖2 = O(Mm). To bound r, we prove that there exists an interior point f in
the polytope F . We construct this f by f =

∑
e∈E f

(e), where f (e) is a circulation passing
through edges e and (t, s) with flow value 1/(4m). All such circulations exist because of the
removal preprocessing. This f satisfies the capacity constraints because all capacities are at
least 1. This shows r ≥ 1

4m
.

Let OPT denote the optimal objective value of the original min-cost flow with flow value F .
Let OPT′ denote the optimal objective value of the min-cost circulation which also has flow
value F . We know OPT′ = OPT− 4FnM . Theorem 2.24 shows that we can find a fractional
circulation f ′ with flow value F ′ such that (cnew)>f ′ ≤ OPT′ + 1

2
, by setting ε = 1

CM2m2 for
some large constant C. We know F ′ is smaller thanF , but F − F ′ ≤ 1

2nM
, because otherwise

sending extra k units of fractional flow from s to t would give extra negative cost ≤ −knM ,
leading to an objective value smaller than OPT′. Let f denote f ′ restricted to the original
planar graph (still with flow value F ′), then we can round f to an integral flow f int with
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same or better flow value and no worst cost using Õ(m) time [96]. Since f int is integral with
flow value ≥ F − 1

2nM
, we conclude it routes the original demand completely. Moreover,

c>f int ≤ c>f ≤ OPT′ +
1

2
+ 4F ′nM = OPT +

1

2
+ 4nM(F ′ − F ) ≤ OPT +

1

2
,

so f int must have the minimum cost.

7.2 Tree operator for slack

To use our existing IPM data structure framework, we must define the tree operators for
both the slack and flow projections. Because we use approximate projection matrices, the
proof of feasibility becomes significantly more involved compared to the exact computations
used in general LPs.

The full slack update at IPM step k with step direction v(k) and step size t̄h is

s← s+ W−1/2P̃w(t̄hv(k)),

where we require P̃w ≈ Pw and P̃wv
(k) ∈ Range(W1/2B).

Let L̃−1 denote the approximation of L−1 from Eq. (3.9), maintained and computable with a
DynamicSC data structure. If we define

P̃w = W1/2BL̃−1B>W1/2 = W1/2BΠ(0)> · · ·Π(η−1)>Γ̃Π(η−1) · · ·Π(0)B>W1/2.

then P̃w ≈ηεP Pw, and Range(P̃w) = Range(Pw) by definition, where η and εP are parameters
in DynamicSC. Hence, this suffices as our approximate slack projection matrix. In order
to use MaintainRep to maintain s throughout the IPM, it remains to define a slack tree
operator M(slack) so that

W−1/2P̃wv
(k) = M(slack)z(k),

where z(k) def
= Γ̃Π(η−1) · · ·Π(0)B>W1/2v(k) at IPM step k. We proceed by defining a tree

operator M satisfying P̃wv
(k) = Mz(k). Namely, we show that M

def
= W1/2BΠ(0)> · · ·Π(η−1)>

is indeed a tree operator. Then we set M(slack) def
= W−1/2M.

For the remainder of the section, we abuse notation and use z to mean z(k) for one IPM step
k.

Definition 7.2 (Slack projection tree operator). Let T be the separator tree from data
structure DynamicSC, with Laplacians L(H) and S̃c(L(H), ∂H) at each node H ∈ T . We
use B[H] to denote the adjacency matrix of G restricted to the region.
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For a node H ∈ T , define V (H) and FH required by the tree operator as ∂H ∪ FH and FH
from the separator tree construction respectively. Note the slightly confusing fact that V (H)

is not the set of vertices in region H of the input graph G, unless H is a leaf node. Suppose
node H has parent P , then define the tree edge operator M(H,P ) : RV (P ) 7→ RV (H) as:

M(H,P )
def
= I∂H∪FH −

(
L

(H)
FH ,FH

)−1

L
(H)
FH ,∂H

def
= I∂H∪FH −X(H)>. (7.2)

At each leaf node H of T , define the leaf operator JH = W1/2B[H].

The remainder of this section proves the correctness of the tree operator.

Lemma 7.3. Let M be the tree operator as defined in Definition 7.2. We have

Mz = W1/2BΠ(0)> · · ·Π(η−1)>z.

We begin with a few observations about the Π(i)’s:

Observation 7.4. For any 0 ≤ i < η, and for any vector x, we have Π(i)>x = x+ yi, where
yi is a vector supported on Fi = ∪H∈T (i)FH . Extending this observation, for 0 ≤ i < j < η,

Π(i)> · · ·Π(j−1)>x = x+ y,

where y is a vector supported on Fi ∪ · · · ∪ Fj−1 = ∪H:i≤η(H)<jFH . Furthermore, if x is
supported on FA for η(A) = j, then y is supported on ∪H∈TAFH .

The following helper lemma describes a sequence of edge operators from a node to a leaf.

Lemma 7.5. For any leaf node H ∈ T , and a node A with H ∈ TA (A is an ancestor of H
or H itself), we have

MH←Az|FA = I∂H∪FHΠ(0)> · · ·Π(η−1)>z|FA . (7.3)

Proof. For simplicity of notation, let V (H)
def
= ∂H ∪ FH for a node H.

To start, observe that for a node A at level η(A), we have Π(i)z|FA = z|FA for all i ≥ η(A).
So it suffices to prove

MH←Az|FA = IV (H)Π
(0)> · · ·Π(η(A)−1)>z|FA .

Let the path from leaf H up to node A in T be denoted (H0
def
= H,H1, . . . , Ht

def
= A), for some

t ≤ η(A). We will prove by induction for k decreasing from t to 0:

MHk←Az|FA = IV (Hk)Π
(η(Hk))>Π(η(Hk)+1)> · · ·Π(η(A)−1)>z|FA . (7.4)
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For the base case of Ht = A, we have MHt←Az|FA = z|FA = IV (Ht)z|FA .

For the inductive step at Hk, we first apply induction hypothesis for Hk+1 to get

MHk+1←Az|FA = IV (Hk+1)Π
(η(Hk+1))> · · ·Π(η(A)−1)>z|FA . (7.5)

Multiplying by the edge operator M(Hk,Hk+1) on both sides gives

MHk←Az|FA = M(Hk,Hk+1)IV (Hk+1)Π
(η(Hk+1))> · · ·Π(η(A)−1)>z|FA . (7.6)

Recall the edge operator M(Hk,Hk+1) maps vectors supported on V (Hk+1) to vectors supported
on V (Hk) and zeros otherwise. So we can drop the IV (Hk+1) term in the right hand side. Let
x

def
= Π(η(Hk+1))> · · ·Π(η(A)−1)>z|FA . Now, by the definition of the edge operator, the above

equation becomes
MHk←Az|FA = (IV (Hk) −X(Hk)>)x. (7.7)

On the other hand, we have

IV (Hk)Π
(η(Hk))> · · ·Π(η(Hk+1)−1)>x = IV (Hk)Π

(η(Hk))> (Π(η(Hk)+1)> · · ·Π(η(Hk+1)−1)>x
)

= IV (Hk)Π
(η(Hk))>(x+ y),

where y is a vector supported on ∪FR for nodes R at levels η(Hk) + 1, · · · , η(Hk+1) − 1

by Observation 7.4. In particular, y is zero on FHk . Also, y is zero on ∂Hk, since ∂Hk ⊆
∪ancestor A′ of HkFA′ , and ancestors of Hk are at level η(Hk+1) or higher. Then y is zero on
V (Hk) = ∂Hk ∪ FHk , and the right hand side is

= (IV (Hk) −X(Hk)>)x,

where we apply the definition of Π(η(Hk))> and expand the left-multiplication by IV (Hk).

Combining with Eq. (7.7) and substituting back the definition of x, we get

MHk←Az|FA = IV (Hk)Π
(η(Hk))> · · ·Π(η(A)−1)>z|FA .

which completes the induction.

To prove Lemma 7.3, we apply the leaf operators to the result of the previous lemma and
sum over all nodes and leaf nodes.
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Proof of Lemma 7.3. Let H be a leaf node. We sum Eq. (7.3) over all A with H ∈ TA to get∑
A:H∈TA

MH←Az|FA = I∂H∪FH
∑

A:H∈TA

Π(0)> · · ·Π(η−1)>z|FA

= I∂H∪FHΠ(0)> · · ·Π(η−1)>z,

where we relax the sum in the right hand side to be over all nodes in T , since by Observation 7.4,
for any A with H /∈ TA, we simply have I∂H∪FHΠ(0)> · · ·Π(η−1)>z|FA = 0. Next, we apply
the leaf operator JH = W1/2B[H] to both sides to get∑

A:H∈TA

JHMH←Az|FA = W1/2B[H]I∂H∪FHΠ(0)> · · ·Π(η−1)>z.

Since B[H] is zero on columns supported on V (G) \ (∂H ∪ FH), we can simply drop the
I∂H∪FH in the right hand side.

Finally, we sum up the equation above over all leaf nodes. The left hand side is precisely the
definition of Mz. Recall the regions of the leaf nodes partition the original graph G, so we
have

∑
H∈T (0)

∑
A:H∈TA

JHMH←Az|FA = W1/2

 ∑
H∈T (0)

B[H]

Π(0)> · · ·Π(η−1)>z

Mz = W1/2BΠ(0)> · · ·Π(η−1)>z.

The tree operator M defined in Definition 7.2 satisfies Mz(k) = P̃wv
(k) at step k, by

the definition of z(k). To support the proper update s ← s + thW−1/2P̃wv
(k), we define

M(slack) def
= W−1/2M and note it is clearly also a tree operator with the same complexity.

We now examine the slack tree operator complexity.

Lemma 7.6. The query and update complexities of the slack tree operator as defined in
Definition 7.7 are Q(K) = O

(
εP

2 maxH:set of K nodes in S
∑

H∈H |FH ∪ ∂H|
)
, where εP is the

Schur complement approximation factor from data structure DynamicSC.

Proof. Let M(D,P ) be a tree edge operator. Applying M(D,P ) = I∂D −
(
L

(D)
FD,FD

)−1

L
(D)
FD,∂D

to

the left or right consists of three steps which are applying I∂D, applying L
(D)
FD,∂D

and solving for
L

(D)
FD,FD

v = b for some vectors v and b. Each of the three steps costs time O(εP
−2|FD ∪ ∂D|)

by Lemma 4.8 and Theorem 7.1.
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For any leaf node H, H has a constant number of edges, and it takes constant time to
compute JHu for any vector u. The number of vertices may be larger but the nonzeros of
JH = W1/2B[H] only depends on the number of edges.

7.3 Tree operator for flow

We hope to use MaintainRep for f⊥ throughout the IPM. In order to do so, it remains to
define a flow tree operator M(flow) so that at step k,

M(flow)z(k) = W1/2P̃′wv
(k),

where z(k) def
= Γ̃Π(η−1) · · ·Π(0)B>W1/2v(k). We will define a tree operator M so that f̃ def

=

Mv(k) satisfies
∥∥∥f̃ −Pwv

(k)
∥∥∥

2
≤ O(ηεP)

∥∥v(k)
∥∥

2
and B>W1/2f̃ = B>W1/2v(k). This means

it is feasible to set P̃′wv
(k) = f̃ . Then, we define M(flow) def

= W−1/2M.

For the remainder of the section, we assume the IPM step is fixed and omit all superscripts
in our notation.

Definition 7.7 (Flow projection tree operator). Let T be the separator tree from data
structure DynamicSC, with Laplacians L(H) and S̃c(L(H), ∂H) at each node H ∈ T . We
use B[H] to denote the adjacency matrix of G restricted to the region.

To define the flow projection tree operator M, we proceed as follows: The tree operator is
supported on the tree T . For a node H ∈ T with parent P , define the tree edge operator
M(H,P ) as:

M(H,P )
def
= (L(H))−1S̃c(L(H), ∂H). (7.8)

At each node H, we let FH in the tree operator be the set FH of eliminated vertices defined
in the separator tree. At each leaf node H of T , we have the leaf operator JH = W1/2B[H].

The complexity of this operator is clearly the same as the slack.

The remainder of the section is dedicated to proving the following theorem of correctness:

Theorem 7.8. Let v ∈ Rm, and z def
= Γ̃Π(η−1) · · ·Π(0)B>W1/2v. Let M be the flow projection

tree operator from Definition 7.7, and let εP be the overall target step accuracy from Dynam-
icSC. Then f̃ def

= Mz satisfies B>W1/2f̃ = B>W1/2v and
∥∥∥f̃ −Pwv

∥∥∥
2
≤ O(ηεP) ‖v‖2.

We first recall some terminology: A vector d is a demand vector if
∑

i di = 0. If B is the edge-
vertex incidence matrix of a graph, then B>x is a demand for any x. Similarly, B>WBx = Lx

is a demand vector. We say a flow f routes a demand d if (W1/2B)>f = d.
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Electrical flow lemmas

Here we introduce some definitions and properties of electrical flow, which we use in later to
prove Theorem 7.8. In this setting, the graph is viewed as an electrical circuit with each edge
e being a wire with resistance W

−1/2
e .

Definition 7.9. Let W1/2B ∈ Rm×n be the edge-vertex weighted incidence matrix of some
graph G, and let L

def
= B>WB be the Laplacian. Let d def

= Lz be a demand vector and f be
any flow that routes d; that is, (W1/2B)>f = d. Then we say ‖f‖2

2 is the energy of the flow
f .

There is a unique energy-minimizing flow f ? routing the demand d on G. From the study of
electrical flows, we know f ? = W1/2BL−1d. Hence, we can refer to its energy as the energy
of the demand d on the graph of L, given by

EL(d)
def
= min

(W1/2B)>f=d
‖f‖2

2 = d>(B>WB)−1d = d>L−1d = z>Lz. (7.9)

If another flow f̃ routing d is approximately energy-minimizing, then f̃ must be close to
f ?:

Lemma 7.10. We continue using the notation from Definition 7.9. For any flow f̃ routing
d on G, if ‖f̃‖2

2 ≤ε EL(d), then ‖f̃ − f ?‖2
2 ≤ O(ε) ‖f ?‖2

2.

Proof. If a flow f̃ routes d on G, then (W1/2B)>f̃ = d. So we have

f ?>(f̃ − f ?) = d>L−1B>W1/2(f̃ − f ?) = d>L−1(d− d) = 0.

Hence, we have an orthogonal decomposition ‖f̃‖2
2 = ‖f̃ ?‖2

2 + ‖f̃ − f ?‖2
2. It follows that

‖f̃ − f ?‖2 ≤ (eε − 1) · ‖f ?‖2
2 = O(ε) · ‖f ?‖2

2 .

We want to understanding how the energy changes when, instead of routing d using the edges
of G, we use edges of some other graphs related to G. In particular, we are interested in the
operations of graph decompositions and taking Schur complements. It turns out the energy
behaves nicely:

Lemma 7.11. Suppose G is a weighted graph that can be decomposed into weighted subgraphs
G1, G2. That is, if L is the Laplacian of G, and L(i) is the Laplacian of Gi, then L = L(1)+L(2).
Suppose d def

= Lz is a demand on the vertices of G. Then if we decompose d = d(1) + d(2),
where d(i) = L(i)z, then the energies are related by:

EL (d) = EL(1)

(
d(1)
)

+ EL(2)

(
d(2)
)
.
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Proof. We have, by definition,

EL(1)

(
d(1)
)

+ EL(2)

(
d(2)
)

= z>L(1)z + z>L(2)z

= z>Lz

= EL(d).

The following lemma shows if G′ is a graph derived from G by taking Schur complement on a
subset of the vertices C, and d is a demand supported on C, then the flow routing d on G
will have lower energy than the flow routing d on G′.

Lemma 7.12. Suppose G is a weighted graph with Laplacian L. Let C be a subset of vertices
of G. Let L′

def
= S̃c(L, C) ≈ε Sc(L, C) be an ε-approximate Schur complement. Then for any

demand d supported on C,
EL (d) ≈ε EL′ (d) .

Proof. We have, by definition,

EL (d) = d>L−1d = d>Sc(L, C)−1d ≈ε d>L′−1d = EL′(d),

where the second equality follows from the fact that d is supported on C combined with the
formula for L−1.

7.3.1 Proof of Theorem 7.8

Let G denote the input graph with weights W and Laplacian L. Let d def
= B>W1/2v be the

demand vector. Let f ? def
= Pwv = W1/2BL−1d, that is, f ? is the electrical flow routing d. In

the first part of the proof, we show that f̃ routes the demand d (Lemma 7.16). In the second
part of the proof, we show that f̃ is close to f ?.

Lemma 7.13. Let z = Γ̃Π(η−1) · · ·Π(0)B>W1/2v be as given in Theorem 7.8. For each node
H ∈ T , let z|FH be the sub-vector of z supported on the vertices FH , and define the demand
d(H) def

= L(H)z|FH . Then d =
∑

H∈T d
(H).

Proof. In the proof, note that all I are n× n matrices, and we implicitly pad all vectors with
the necessary zeros to match the dimensions. For example, z|FH should be viewed as an
n-dimensional vector supported on FH . Define

X(i) def
=

∑
H∈T (i)

X(H).
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We have
Π(i) = I−X(i) = I−

∑
H∈T (i)

L
(H)
∂H,FH

(
L

(H)
FH ,FH

)−1

.

Suppose H is at level i of T . We have

z|FH = (L
(H)
FH ,FH

)−1Π(η−1) · · ·Π(1)Π(0)d

= (L
(H)
FH ,FH

)−1Π(i−1) · · ·Π(1)Π(0)d, (7.10)

where we use the fact Im(X(H′)) ∩ FH = ∅ if η(H ′) ≥ i. From this expression for z|FH , we
have

d(H) def
= L(H)z|FH
= L

(H)
∂H,FH

z|FH + L
(H)
FH ,FH

z|FH
= X(H)(Π(i−1) · · ·Π(1)Π(0)d)FH + (Π(η−1) · · ·Π(1)Π(0)d)|FH ,

where the last line follows from Eq. (7.10). By padding zeros to X(H), we can write the
equation above as

d(H) = X(H)Π(i−1) · · ·Π(1)Π(0)d+ (Π(η−1) · · ·Π(1)Π(0)d)|FH .

Now, computing the sum, we have

∑
H∈T

d(H) =

η∑
i=0

∑
H∈T (i)

X(H)Π(i−1) · · ·Π(1)Π(0)d+

η∑
i=0

∑
H∈T (i)

(Π(η−1) · · ·Π(1)Π(0)d)|FH

=

(
η∑
i=0

X(i)Π(i−1) · · ·Π(1)Π(0)d

)
+ Π(η−1) · · ·Π(1)Π(0)d (FH partition V (G))

=

(
η−1∑
i=0

(I−Π(i))Π(i−1) · · ·Π(1)Π(0)d

)
+ Π(η−1) · · ·Π(1)Π(0)d

= d, (telescoping sum)

completing our proof.

Next, we examine the feasibility of f̃ . To begin, we introduce a decomposition of f̃ based on
the decomposition of d, and prove its feasibility.

Definition 7.14. Let M(H) be the flow tree operator supported on the tree TH (Defini-
tion 3.39). We define the flow f̃ (H) def

= M(H)z|FH .
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Lemma 7.15. We have that (W1/2B)>f̃ (H) = d(H). In other words, the flow f̃ (H) routes
the demand d(H) using the edges of the original graph G (in fact, the edges are all from the
region H).

Proof. We will first show inductively that for each H ∈ T , we have B>W1/2M(H) = L(H). In
the base case, if H is a leaf node of T , then TH is a tree with root H and a single leaf node
under it. Then M(H) = W1/2B[H]. It follows that

B>W1/2M(H) = B>W1/2W1/2B[H] = L(H),

by definition of L(H) for a leaf H of T . In the inductive case, H is not a leaf node of T . Let
D1, D2 be the two children of H. Then

B>W1/2M(H) = B>W1/2
(
M(D1)M(D1,H) + M(D2)M(D2,H)

)
= L(D1)M(D1,H) + L(D2)M(D2,H) (by induction)
= L(D1)(L(D1))−1S̃c(L(D1), ∂D1) + L(D2)(L(D2))−1S̃c(L(D2), ∂D2)

= S̃c(L(D1), ∂D1) + S̃c(L(D2), ∂D2)

= L(H).

Finally, we conclude that (W1/2B)>f̃ (H) = B>W1/2M(H)z|FH = L(H)z|FH = d(H), where the
last inequality follows by definition of d(H).

Lemma 7.16. f̃ is a feasible flow routing d on G.

Proof. We first decompose d =
∑

H∈T d
(H) according to Lemma 7.13. By definition of the

flow tree operator,
f̃

def
= Mz

def
=
∑
H∈T

M(H)z|FH =
∑
H∈T

f̃ (H),

where f̃ (H) routes demand d(H) by Lemma 7.15. Hence,

(W1/2B)>f̃ =
∑
H∈T

(W1/2B)>f̃ (H) =
∑
H∈T

d(H) = d.

Next, we show f̃ is close to f ? in terms of energy. To start, we know f̃ (H) routes d(H) in
the region H, and we want to relate its energy to the minimum energy flow routing d(H) in
H:
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Lemma 7.17. Let H be a node at level i in T . Given any z, let d def
= L(H)z be a demand.

Then the flow f def
= M(H)z satisfies ‖f‖2

2 ≤iεP EL[H](d). Consequently,∥∥∥f̃ (H)
∥∥∥2

2
≤iεP EL[H]

(
d(H)

)
.

Proof. We proceed by induction for the first part of the lemma. In the base case, H is a leaf
node, and we have∥∥M(H)z

∥∥2

2
= z>(B[H])>WB[H]z = z>L[H]z = EL[H] (d) .

Suppose H is at level i > 0 in T , with children D1 and D2 at level at most i− 1. Then∥∥M(H)z
∥∥2

2

=
∥∥(M(D1)M(D1,H) + M(D2)M(D2,H)

)
z
∥∥2

2

Since Range(M(D1)) and Range(M(D2)) are orthogonal, we have

=
∥∥M(D1)M(D1,H)z

∥∥2

2
+
∥∥M(D2)M(D2,H)z

∥∥2

2

≤(i−1)εP EL[D1]

(
L(D1)M(D1,H)z

)
+ EL[D2]

(
L(D2)M(D2,H)z

)
(by inductive hypothesis with z = M(Di,H)z)

= EL[D1]

(
L(D1)(L(D1))−1S̃c(L(D1), ∂D1)z

)
+ EL[D2]

(
L(D2)(L(D2))−1S̃c(L(D2), ∂D2)z

)
(substituting the definition of M(Di,H))

= EL[D1]

(
S̃c(L(D1), ∂D1)z

)
+ EL[D2]

(
S̃c(L(D2), ∂D2)z

)
.

Since the demand vectors are supported on ∂D1 and ∂D2 respectively, we may take exact
Schur complements and apply Lemma 7.12 with ε = 0 to get

= ESc(L[D1],∂D1)

(
S̃c(L(D1), ∂D1)z

)
+ ESc(L[D2],∂D2)

(
S̃c(L(D2), ∂D2)z

)
.

Theorem 4.11 guarantees Sc(L[Di], ∂Di) ≈εP S̃c(L(Di), ∂Di), so again by Lemma 7.12,

≤εP ES̃c(L(D1),∂D1)

(
S̃c(L(D1), ∂D1)z

)
+ ES̃c(L(D2),∂D2)

(
S̃c(L(D2), ∂D2)z

)
= EL(H)(L(H)z). (by Lemma 7.11)

Applying the lemma to d(H) = L(H)z|FH gives the bound on
∥∥∥f̃ (H)

∥∥∥2

2
as required.

Next, we show that the sum of energies for routing the demand terms on different regions is
approximately equal to the energy for routing the entire demand on G.
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Lemma 7.18. We have the following approximation of the energy of routing d:∑
H∈T

EL[H]

(
d(H)

)
≈(η+1)εP EL (d) .

Proof. We need the following matrix multiplication property: For any matrices A,B,D,[
A−1 0

0 0

] [
A B

B> D

] [
A−1 0

0 0

]
=

[
A−1 0

0 0

]
. (7.11)

Recall in our setting, all matrices are padded with zeros so that their dimension is n× n, and
vectors padded with zeros so their dimension is n.

Define β def
= Π(η−1) · · ·Π(1)Π(0)d for simplicity of notation, so that z|FH =

(
L

(H)
FH ,FH

)−1

β.
Then,

EL[H]

(
d(H)

)
≈εP EL(H)

(
d(H)

)
(by Lemma 7.12)

= z>|FHL(H)z|FH
= β>

(
L

(H)
FH ,FH

)−1

L(H)
(
L

(H)
FH ,FH

)−1

β

= β>
(
L

(H)
FH ,FH

)−1

β. (by Eq. (7.11))

Summing over all H ∈ T , we get∑
H∈T

EL[H]

(
d(H)

)
≈εP β>

∑
H∈T

(L
(H)
FH ,FH

)−1β

= d>Π(0)> · · ·Π(η−1)>

[∑
H∈T

(L
(H)
FH ,FH

)−1

]
Π(η−1) · · ·Π(0)d

≈ηεP d>L−1d

= EL(d).

Finally, we conclude the proof of Theorem 7.8 by showing f̃ is close to f ? def
= Pwv.

Lemma 7.19. We have
∥∥∥f̃ − f ?∥∥∥

2
≤ O(ηεP) ‖v‖2.
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Proof. We know f̃ routes d on G. Its energy is bounded by

∥∥∥f̃∥∥∥2

2
=

∥∥∥∥∥∑
H∈T

f̃ (H)

∥∥∥∥∥
2

2

≤

 η∑
i=0

∥∥∥∥∥∥
∑

H∈T (i)

f̃ (H)

∥∥∥∥∥∥
2

2

(by triangle inequality)

≤ (η + 1) ·
η∑
i=0

∥∥∥∥∥∥
∑

H∈T (i)

f̃ (H)

∥∥∥∥∥∥
2

2

(by Cauchy-Schwarz)

≤ (η + 1) ·
η∑
i=0

∑
H∈T (i)

∥∥∥f̃ (H)
∥∥∥2

2
(by orthogonality)

≤ (η + 1) ·
η∑
i=0

∑
H∈T (i)

eiεP · EL[H]

(
d(H)

)
(by Lemma 7.17)

≈O(ηεP) EL (d) . (by Lemma 7.18)

Now we apply Lemma 7.10 to get that∥∥∥f̃ − f ?∥∥∥2

2
≤ O(ηεP) · ‖f ?‖2

2 ≤ O(ηεP) · ‖v‖2
2 ,

where the last inequality follows from the fact that Pw is an orthogonal projection matrix.

7.4 Inexact Laplacian solver

In the previous subsections, and in the computation of z, we have implicitly assumed an
exact Laplacian solver, when in reality, we are using the SDD-solver from Theorem 7.1. This
difference affects the feasibility of the solution updates, which we address here.

For the computation of z and the slack solution, we apply the second part of Theorem 7.1,
which shows that for any SDD-matrix M and vector d, the solver is in fact computing Zd

for some Z ≈M−1. The spectral approximation is carried through the entire tree operator,
therefore, as long as the solver solves to εP accuracy, we still have P̃w ≈O(ηεP) Pw for the
slack.

For the flow update, we have an additional issue of feasibility at each step. While ‖f̃ −
Pwv‖2 ≤ Õ(ηεP)‖v‖2 is satisfied even with the inexact Laplacian solver, we now do not
immediately have B>W1/2f̃ = B>W1/2v; in other words, the update at each IPM step is
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not a circulation. To resolve this, recall the leaf region decomposition f̃ =
∑

leaf H f̃ |E(H),
and d def

= B>W1/2v =
∑

leaf H B[H]>W1/2v. We define the excess demand at each leaf node
H by d̄(H) def

= B[H]>W1/2(v − f̃). The vector d̄(H) is indeed a demand on region H, which
we can route exactly using a maximum-weighted spanning tree in time linear in the size of H.
Let the resulting flow be denoted r|E(H), and let r =

∑
leaf H r|E(H), which we also include in

the flow update. Then B>W1/2(f̃ + r) = B>W1/2v, meaning we once again guarantee that
the flow update is a circulation. Next, it remains to show ‖r‖2 ≤ Õ(ηεP)‖v‖2.

Let us first consider r|E(H) for any leaf region H. We have

‖r|E(H)‖2
2 ≤ O(1) ·

(
‖r|E(H)‖∞

)2 (regions are constant size)

≤ O(1) ·

(
‖d̄(H)‖1

w
1/2
min

)2

(r routes d in a weighted manner)

≤ O
(
w−1

min

)
·
(
‖d̄(H)‖1

)2

≤ O
(
w−1

min

)
·
(
‖d̄(H)‖2

)2
. (again regions are constant size)

Next, since ‖f̃−Pwv‖2 ≤ Õ(ηεP)‖v‖2, and B is an adjacency matrix, we also know that∥∥∥∥∥∑
leaf H

d̄(H)

∥∥∥∥∥
2

2

=

∥∥∥∥∥∑
leaf H

B[H]>W1/2(v − f̃)

∥∥∥∥∥
2

2

≤ Õ (ηεPwmax) · ‖v‖2
2.

We are happy to incur poly(m) error; hence, combining the two inequalities above with the
bound on wmax/wmin from earlier, we get

‖r‖2
2 ≤ Õ(ηεP · poly(m))‖v‖2

2,

as required.

Finally, we bound the runtime of the solver; more specifically, we bound the term log(1/λ2(L)).
Whenever we apply the SDD-solver, the matrix is either L(H) or L

(H)
FH ,FH

for a node H. Without
loss of generality, we may assume the graphs associated with these matrices are connected,
otherwise we independently solve for each connected component. By the Cauchy Interlacing
Theorem, we know λ2(L

(H)
FH ,FH

) ≥ λ2(L(H)). Furthermore, recall L(H) ≈εP Sc(L(H), FH ∪ ∂H),
and Schur complements are better conditioned than the original matrix, therefore λ2(L(H)) ≥
λ2(L) up to polynomial factors. Next, recall L is a weighted Laplacian with weights (∇2φ(f))−1

from the IPM, so to lowerbound λ2(L) up to polynomial factors, it suffices to lowerbound
these weights. We have

Wii =
(
(ui − f i)−2 + (f i − li)−2

)−1 ≥ η2
i /2,
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where ηi is the distance from f i to the boundary, i.e. li and ui. Corollary 2.16 shows that ηi
is polynomially bounded in terms of the polytope parameters L,R, and the central path t,
meaning that all k × k SDD-solves in our algorithm can be performed in time Õ(k logM)

time, where M is an upper bound on the values from the original problem inputs.

7.5 Main flow results

Theorem 7.20. Let G = (V,E) be a directed planar graph with n vertices and m edges.
Assume that the demands d, edge capacities u and costs c are all integers and bounded by M
in absolute value. Then there is an algorithm that computes a minimum-cost flow satisfying
demand d in Õ(n log2M) expected time.

Theorem 7.21. Let G = (V,E) be a directed graph with n vertices and m edges. Assume that
the demands d, edge capacities u and costs c are all integers and bounded by M in absolute
value. Given a tree decomposition of G with width τ and size S, there is an algorithm that
computes a minimum-cost flow in Õ(m

√
τ logM + S) expected time.

The proofs for the two theorems are analogous. In either case, we combine the data structure
framework established in Theorem 5.11, the definition of projection operators and their
complexities in the previous sections of this chapter, and the parameters for separator trees
for 1/2-separable (planar) and for treewidth τ graphs. The results follow.

As a direct corollary of Theorem 7.21, we can solve min-cost flow on any graph with n vertices,
m edges and integral polynomially-bounded costs and constraints in Õ(m

√
n) expected time,

as the treewidth of any n-vertex graph is at most τ = n, and the tree decomposition is
trivially the graph itself. This result matches that of [114] obtained using the Lee-Sidford
barrier for the IPM, which requires Õ(

√
n) iterations. In contrast, we use the standard log

barrier which requires Õ(
√
m) iterations, and leverage the robustness of the IPM and custom

data structures to reduce the amortized cost per iteration. We find it noteworthy that all
other max flow results matching or beating our time require either the Lee-Sidford barrier
([31]) or significantly divergent IPM techniques ([39]).

7.6 Approximating treewidth

Using our faster max-flow algorithm as a subroutine, we can efficiently compute a tree
decomposition of any given graph, where the width is within a O(log n)-factor of the optimal:

Corollary 7.22. Let G = (V,E) be a graph with n vertices, m edges, and treewidth tw(G).
There is an algorithm to find a tree decomposition of G with width at most O(tw(G) · log n)
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in Õ(tw(G)3 ·m) expected time.

It is well known that computing the treewidth of a graph is NP-hard [11], and there is
conditional hardness result for even constant-factor approximation algorithm [13]. For
polynomial time algorithms, the best known result is a O(

√
log tw)-approximation algorithm

by [69], which involves solving a semidefinite program with n2 variables.

There is a series of works focused on computing approximate treewidth for small treewidth
graph in nearly-linear time; we refer the readers to [23] for a more detailed survey. Notably,
[73] showed for any graph G, there is an algorithm to compute a tree decomposition of width
O(tw(G)2) in Õ(tw(G)7 · n) time. [32] improved the running time to Õ(tw(G)3 ·m) with
slightly compromised approximation ratio O(tw(G)2 · log1+o(1) n). More recently, [21] showed
how to compute a tree decomposition of width O(tw(G) · log3 n) in O(m1+o(1)) time.

Our algorithm for Corollary 7.22 requires some tree decomposition of the graph as input. We
use the following lemma to construct the initial tree decomposition.

Lemma 7.23 ([32]). For any 2
3
< α < 1 and 0 < ε < 1− α, given a graph G with n vertices

and m edges, if the graph G contains an α-balanced vertex separator of size K, then there is
a randomized algorithm that finds a balanced vertex separator of size Õ(K2/ε) in Õ(mK3/ε)

expected time. The algorithm does not require knowledge of K.

Next, the lemma below establishes the relationship between max flow and balanced edge
separators. We first give the relevant definitions. For a given constant c ≤ 1/2, a directed
edge-cut (S, S) is called a c-balanced edge separator if both |S| ≥ cn and |S| ≥ cn. The
capacity of the cut (S, S) is the total capacity of all edges crossing the cut. The minimum
c-balanced edge separator is the c-balanced edge separator with minimum capacity. A λ

pseudo-approximation to the minimum c-balanced edge separator is a c′-balanced cut (S, S)

for some other constant c′, whose capacity is within a factor of λ of that of the minimum
c-balanced edge separator.

Lemma 7.24 ([12]). An O(log n) pseudo-approximation to the minimum c-balanced edge sep-
arator in directed graphs can be computed using polylogn single-commodity flow computations
on the same graph.

Proof of Corollary 7.22. It is well known that given a O(log n) approximation algorithm
for finding a balanced vertex separator, one can construct a tree decomposition of width
O(tw(G) log n). Specifically, the algorithm of [24] finds such a tree decomposition by recur-
sively using a balanced vertex separator algorithm and requires only an additional log factor
in the runtime.



139

Now, it suffices to show we can find a log(n) pseudo-approximation balanced vertex separator
in Õ(m · tw(G)3) expected time. Using the reduction from [120], we reduce the balanced
vertex separator to directed edge separator on graph G∗ = (V ∗, E∗), where

V ∗ =
{
v | v ∈ V

}
∪
{
v′ | v ∈ V

}
,

and
E∗ =

{
(v, v′) | v ∈ V

}
∪
{

(u′, v) | (u, v) ∈ E
}
∪
{

(v′, u) | (u, v) ∈ E
}
.

We note that tw(G∗) = O(tw(G)). This shows G∗ has a 2/3-balanced vertex separator of
size O(tw(G)). We first use Lemma 7.23 to construct a Õ(tw(G)2)-separator tree for G∗.
Then, we use the algorithm in [12] combined with our flow algorithm to find a balanced edge
separator in Õ(m · tw(G)) expected time. Hence, we can find a balanced vertex separator in
Õ(m · tw(G)3) expected time.
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Chapter 8

Circle packing representation of planar graphs

This final chapter is a standalone result in computational geometry. The result is quite
unique in the way it combines structural combinatorics with a black-box convex optimzation
algorithm: To compute a circle packing representation of a given planar graph, it suffices
to optimize a convex function that captures the requirements for a feasible circle packing.
To efficiently solve the optimization problem via the black-box algorithm, we require the
objective function to be strongly convex around the minimizer; we show this is indeed the
case by proving new combinatorial properties of circle packing representations. The spirit of
this thesis is arguably best embodied by this result, so without further ado:z

8.1 Introduction

Given a planar graph G = (V,E), a circle packing representation of G consists of a vector of
radii r indexed by V , and a straight line embedding of G in the plane given by p : V 7→ R2×R2,
such that

1. For each vertex v at location pv, a circle Cv of radius rv can be drawn centered at v,

2. all circles’ interiors are disjoint, and

3. two circles Cu, Cv are tangent if and only if uv ∈ E(G).

Figure 8.1: Example of a planar graph G and its circle packing representation.
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It is easy to see that any graph with a circle packing representation is planar. Amazingly, the
following deep and fundamental theorem asserts the converse is also true.

Theorem 8.1 (Koebe-Andreev-Thurston Circle Packing Theorem [107, 10, 158].). Every
planar graph G admits a circle packing representation. Furthermore, if G is a triangulation,
then the representation is unique up to Möbius transformations.

Recall that every embedded planar graph has an associated planar dual graph, where each
face becomes a vertex and each vertex a face. In our context, we will primarily focus on
primal-dual circle packing, which intuitively consists of two circle packings, one for the original
(primal) graph and another for the dual, that interact in a specific way. Formally:

Definition 8.2 (Simultaneous primal-dual circle packing.). Let G = (V,E) be a 3-connected
planar graph, and G∗ = (V ∗, E∗) its planar dual. Let f∞ denote the unbounded face in a
fixed embedding of G; it also naturally identifies a vertex of G∗.

The (simultaneous) primal-dual circle packing representation of G with unbounded face f∞
consists of vectors r ∈ RV , r̃ ∈ RV ∗\f∞ and straight-line embeddings of G and G∗ − f∞ in
the plane such that:

1. The radii r, positions pr, and circles {Cv : v ∈ V } give a circle-packing of G,
2. The radii r̃, positions pr̃, and circles {Cf : f ∈ V ∗−f∞} is a circle packing of G∗−f∞,
3. Cf∞ , the circle corresponding to f∞, has radius rf∞ and contains Cf for all f ∈ V (G∗)

in the plane. Furthermore, Cf∞ is tangent to Cg if and only if f∞g ∈ E(G∗).
4. In the embedding, dual edges cross at a right angle, and no other edges cross. Further-

more, if uv ∈ E(G) and fg ∈ E(G∗) are a pair of dual edges, then Cu is tangent to Cv
at the same point where Cf is tangent to Cg.

Section 8.2.1 provides more geometric intuitions regarding the definition.

The Circle Packing Theorem is generalized in this framework by Pulleyblank and Rote
(unpublished), Brightwell and Scheinerman [33], and Mohar [129]:

Theorem 8.3. Every 3-connected planar graph admits a simultaneous primal-dual circle
packing representation. Furthermore, the representation is unique up to Möbius transforma-
tions.

A primal-dual circle packing for a graph G naturally produces a circle packing of G by
ignoring the dual circles. It also has a simple and elegant characterization based on angles
in the planar embeddings, which we discuss in detail later. Moreover, the problem instance
does not blow up in size compared to the original circle packing, since the number of faces is
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Figure 8.2: The planar graph G from the previous example is in black on top. Its planar
dual, G∗, is overlaid in green. The vertex corresponding to the unbounded face f∞ is marked
in purple. On the bottom is the simultaneous primal-dual circle packing representation of G.
The largest red circle is Cf∞ .
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on the same order as the number of vertices in planar graphs.

We remark here that either the radii vectors or the embeddings suffice in defining the primal-
dual circle packing representation: Given the radii, the locations of the vertices are uniquely
determined up to isometries of the plane; the procedure for computing them is discussed in
Section 8.2.2. Given the embedding, the radii are determined by the tangency requirements
in Condition (4) of Definition 8.2.

8.1.1 Related works and applications

Circle packing representations have many connections to theoretical computer science and
mathematics. The Circle Packing Theorem is used in the study of vertex separators: It
gives a geometric proof of the Planar Separator Theorem of Lipton and Tarjan [128, 82];
an analysis of circle packing properties further gives an improved constant bound for the
separator size [152]; it is also used crucially to design a simple spectral algorithm for computing
optimal separators in graphs of bounded genus and degree [102]. In graph drawings, these
representations give rise to straight-line planar embeddings; the existence of simultaneous
straight-line planar embeddings of the graph and its dual, in which dual edges are orthogonal,
was first conjectured by Tutte in his seminal paper in the area [160]. They are also used to
prove the existence of Lombardi drawings and strongly monotone drawings for certain classes
of graphs [66, 70]. Benjamini used the Circle Packing Theorem as a key component in his
study of distributional limits of sequences of planar graphs [19]. In polyhedral combinatorics,
Steinitz’s Theorem states that a graph is formed by the edges and vertices of a 3-dimensional
convex polyhedron if and only if it is a 3-connected planar graph. The theorem and its
generalization, the Cage Theorem, can be proved using the (Primal-Dual) Circle Packing
Theorem [171]. For a more comprehensive overview of the other related works, see Felsner
and Rote [71].

In Riemannian geometry, circle packing of triangulations is tightly connected to the Riemann
Mapping Theorem, which states that there is a conformal (angle-preserving) mapping between
two simply connected open sets in the plane. Thurston had conjectured that circle packings
can be used to construct approximate conformal maps; this was later proved by Rodin and
Sullivan [146], which formed the basis of extensive work in discrete conformal mappings [86]
and analytic functions [18, 61, 156]. An excellent high-level exposition of this research direction
is given by Stephenson [157]. One unique and important application is in neuroscience research:
Conformal maps, and specifically their approximations using circle packings, can be used to
generate brain mappings while preserving structural information [79, 89]. This suggests a
real-world interest in efficient circle packing algorithms.

Computationally, Bannister et al. [17] showed that numerical approximations of circle packing
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representations are necessary. Specifically, they proved for all large n, there exists graphs
on n vertices whose exact circle packing representations involve roots of polynomials of
degree Ω(n0.677); solving these exactly, even under extended arithmetic models, is impossible.
Mohar [129, 130] gave a polynomial-time iterative algorithm to compute ε-approximations of
primal-dual circle packings in two phases: the radii are approximated first, followed by the
position of the vertices. The presentation was very recently simplified by Felsner and Rote [71].
However, because run-time was not the focus beyond demonstrating that it is polynomial,
a rudimentary analysis of the algorithm puts the complexity at Ω̃(n5). For general circle
packing, Alam et al. [6] gave algorithms with a more combinatorial flavour for special classes
of graphs, including trees and outerpaths in linear time, and fan-free graphs in quadratic
time. Chow [40] showed an algorithm based on Ricci flows that converges exponentially fast
to the circle packing of the triangulation of a closed surface.

In practice, for general circle packing, there is a numerical algorithm CirclePack by Stephen-
son which takes a similar approach as Mohar and works well for small instances [48]. The
current state-of-the-art is by Orick, Collins and Stephenson [137]; here the approach is to
alternate between adjusting the radii and the position of the vertices at every step. The
algorithm is implemented in the GOPack package in MATLAB; numerical experiments using
randomly generated graphs of up to a million vertices show that it performs in approximately
linear time. However, there is no known proof of convergence.

8.1.2 Our contribution

We follow the recent trend of attacking major combinatorial problems using tools from convex
optimization. Although the combinatorial constraints on the radii had been formulated as a
minimization problem in the past (e.g. by Colin de Vedière [47] and Ziegler [171]), the objective
function is ill-conditioned, and therefore standard optimization techniques would only give a
large polynomial time. Our key observation is that the primal-dual circle packing problem
looks very similar to the minimum s-t cut problem when written as a function of the logarithm
of the radii (see Equation (8.3)). Due to this formulation, we can combine recent techniques in
interior point methods and Laplacian system solvers [108, 104, 113, 154, 109, 42, 141, 110, 112]
to get a run-time of Õ(n1.5 logR), where R is the ratio between the maximum and minimum
radius of the circles. In the worst case, this ratio can be exponential in n; however the
approach still gives a significantly improved run-time of Õ(n2.5).

For further improvements, our starting point is the recent breakthrough on matrix scaling
problems [46], which showed that certain class of convex problems can be solved efficiently
using vertex sparsifier chains [110]. When applied to the primal-dual circle packing problem,
it gives a run-time of Õ(n log2R), which is worse than interior point in the worst case. One
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of the logR term comes from the accuracy requirement for circle packing; this term seems to
be unavoidable for almost all existing iterative techniques. The second term comes from the
problem diameter.

To obtain a better bound, we present new properties of the primal-dual circle packing
representation for triangulations using graph theoretic arguments. In particular, we show
there is a spanning tree in a related graph such that the radii of neighbouring vertices
are polynomially close to each other (Section 8.2.3). This allows us to show that the
objective function is locally strongly convex (Lemma 8.26). Combining this with techniques
in matrix scaling [46], we achieve a run-time of Õ(n logR) for primal-dual circle packing
for triangulations and general circle packing. Given the problem requires minimizing a
convex function with accuracy 1/R, we attain the natural run-time barrier of existing convex
optimization techniques.

8.1.3 Our result

For primal-dual circle packing, we focus on triangulations, which are maximal planar graphs,
and present a worst-case nearly quadratic time algorithm.

Theorem 8.4. Let G = (V,E) be a triangulation with dual G∗ = (V ∗, E∗), where |V |+ |V ∗| =
n. Let f∞ ∈ V ∗ denote its unbounded face. There is an explicit algorithm that finds radii
r ∈ Rn with rf∞ = 1, and locations p ∈ R2(n−1) of V ∪ V ∗ − f∞ in the plane, such that

1. there exists a target primal-dual circle packing representation of G with radii vector
r? ∈ Rn and vertex locations p? ∈ R2(n−1); furthermore, r?f∞ = 1 and ‖r?‖∞ = O(1),

2. 1− ε ≤ ru/r?u ≤ 1 + ε for each u ∈ V ∪ V ∗, and

3. ‖pu − p?u‖∞ ≤ ε/R for each u ∈ V ∪ V ∗ − f∞,

where R = r?max/r
?
min is the ratio between the maximum and minimum radius in the target

representation. The algorithm is randomized and runs in expected time

Õ

(
n log

R

ε

)
.

Remark 8.5. We use the more natural ε/R for the location error instead of ε, in order to
reflect the necessary accuracy at the smallest circle, which has radius Θ(1/R). We use Õ in
the runtime to hide a poly(log(n), log log(R/ε)) factor.

From Theorem 8.4, an algorithm for general circle packing is easily obtained.
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Theorem 8.6. Let G be any planar graph where |V (G)| = n. There is an explicit algorithm
that finds radii r ∈ Rn and locations p ∈ R2n, such that

1. there exists a target circle packing of G with radii vector r? ∈ Rn and vertex locations
p? ∈ R2n, and ‖r‖∞ = O(1),

2. 1− ε ≤ ru/r?u ≤ 1 + ε for each u ∈ V , and

3. ‖pu − p?u‖∞ ≤ ε/R for each u ∈ V (G),

where R = r?max/r
?
min is the ratio between the maximum and minimum radius in the target

representation. The algorithm is randomized and runs in expected time

Õ

(
n log

R

ε

)
.

Remark 8.7. R is a natural parameter of the circle packing problem and is poly(n) for several
classes of graphs as described in [6]; it is bounded by (2n)n in the worst case (Corollary 8.17).
When R is poly(n), our algorithm achieve nearly linear-time complexity.

8.2 Solution characterization

In this section, we present some structural properties of primal-dual circle packing represen-
tations which will be crucial to the algorithm. We begin with a review of basic graph theory
concepts.

A plane graph is a planar graph G with an associated planar embedding. The embedding
encodes additional information beyond the vertex and edge sets of G; in particular, it defines
the faces of G and therefore a cyclic ordering of edges around each vertex. It is folklore that
any 3-connected planar graph has a well-defined set of faces.

The dual graph of a plane graph G is denoted by G∗. Its vertex set is the set of faces of G,
and two vertices are adjacent in G∗ whenever the corresponding faces in G share a common
edge on their boundary. Note that there is a natural bijection between the edges of G∗ and
the edges of G. We denote the unbounded face of a plane graph G by f∞.

8.2.1 Representations on the extended plane

In the definition of primal-dual circle packing representation, we specified that the embeddings
are in the Euclidean plane. For a more intuitive view, consider the embeddings in the extended
plane with the appropriate geometry: Here, Conditions (2) and (3) in Definition 8.2 collapse
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z∗ x∗

Figure 8.3: Two bounded faces z, x of a plane graph P is shown in black; they correspond to
dual vertices z∗ and X∗, in blue. The dual of the edge z∗x∗ ∈ E(P ∗) is the unique edge that
z∗x∗ crosses in the embedding; note that it is on the boundaries of both faces z and x in P .

into one, which asks for a valid circle packing of G∗ in the extended plane, such that Cf∞ is a
circle centered at infinity (its radius becomes irrelevant). All other tangency requirements hold
as before, and the interaction between the primal and dual embeddings are not changed.

This view ties into Möbius transforms, mentioned in Theorems 8.1 and 8.3. A Möbius
transform is an angle-preserving map of the extended plane to itself; moreover, it maps circles
to lines or circles. It can be shown that for any two faces f, g of G, a primal-dual circle
packing representation of G with unbounded face f can be obtained from one with unbounded
face g via an appropriately defined Möbius transform. Furthermore, the roles of G and G∗

become interchangeable.

For our algorithms, we compute a primal-dual circle packing representation of G after fixing
an unbounded face, and do not concern ourselves with these transforms. We continue with
the original definition of embedding in the Euclidean plane.

8.2.2 Angle graph

Given a 3-connected plane graph G = (V,E), the angle graph of G is the bipartite plane
graph ĤG = (V ∪ V ∗, E(Ĥ)) constructed as follows: For each vertex v ∈ V , fix its position in
the plane based on G; place a vertex f in each face of G (including the unbounded face f∞);
connect v, f ∈ V (ĤG) with a straight line segment if and only if v is a vertex on the boundary
of f in G. When the original graph G is clear, we simply write Ĥ. It is convenient to also
define the reduced angle graph H, obtained from Ĥ by removing the vertex corresponding to
f∞. H is again a bipartite plane graph; all its bounded faces are of size four.

The (reduced) angle graph is so named because of the properties that become apparent when
its embedding derives from a primal-dual circle packing representation of G: Specifically,
suppose r,p are the radii and location vectors of a valid representation, and that the locations
of vertices of H are given by p. Note that G’s outer cycle Co = (s1, . . . , sk) must be embedded
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u

f

v

g
ru

rf

rv

rg

θvf

θvf

Figure 8.4: An illustration of the structure of H locally, with edges of H shown in black.
Primal circles are in blue and dual circles in red. Vertices u, f, v, g define the boundary of
a face; u, v ∈ V and f, g ∈ V ∗. The edges uv ∈ E and fg ∈ E∗ are dual to each other and
cross at a right angle, as required by the circle packing representation. Observe, for example,
Cv is partially covered by Kvg and Kvf .

as a convex polygon, in order for conditions on Cf∞ to be satisfied; suppose the polygon has
interior angle αi at vertex si. Then for any u ∈ V (H),

∑
w : uw∈E(H)

arctan
rw
ru

=

{
π u /∈ Co
αi/2 u ∈ Co.

(8.1)

To see this, first observe that an edge uw in this embedding has a natural kite Kuw in the
plane associated with it, formed by the vertices u,w and the two intersection points of Cu and
Cw. (See, for example, edge vf in Figure 8.4.) Furthermore, distinct kites do not intersect in
the interior. Suppose u /∈ Co, and let w1, . . . , wl denote its neighbours in cyclic order. Then
Cv is covered by the kites Kuw1 , . . . , Kuwl , which all meet at the vertex u and are consecutively
tangent. Each neighbour wi contributes an angle of 2 arctan(rwi/ru) at u for a total of 2π.
For the vertices on Co, it can be shown that if u = si, the kites will cover an angle equal to
αi.

Conversely, any r ∈ R|V (H)| with the above property almost suffices as the radii of a primal-
dual circle packing representation. Indeed, we can embed H (and therefore G and G∗ − f∞)
based on r as follows: Fix any vertex u to start; embed the vertices in N(u) in cyclic order
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around u, by forming the consecutively tangent kites using r. The process continues in a
breadth-first fashion until all the vertices are placed. By construction, this embedding with
radii r satisfies conditions (1),(2),(4) in Definition 8.2. Moreover, the outer cycle of G forms
a convex k-gon with interior angles α1, . . . , αk.

The following theorem states that vectors r satisfying Equation (8.1) must exist.

Theorem 8.8 ([130]). Let G be a 3-connected plane graph with outer cycle Co = (s1, . . . , sk)

and unbounded face f∞. Let H be its reduced angle graph, and α1, . . . , αk ∈ (0, π) such
that

∑
i αi = (k − 2)π. Then, up to scaling, there exists a unique r ∈ R|V (H)| satisfying

Equation (8.1).

For our purposes, G is a triangulation with outer cycle Co = (s1, s2, s3) and unbounded face
f∞. By Theorem 8.8, there exists r ∈ R|V (H)| such that Equation (8.1) is satisfied with
αi = π/3 for i = 1, 2, 3. This gives rise to a primal-dual circle packing representation without
Cf∞ , where the outer cycle Co is embedded as a triangle with interior angles all equal to π/3,
i.e an equilateral triangle. It follows that all the rsi ’s must be equal, and therefore we can
take Cf∞ to be the unique circle inscribed in the outer triangle, leading to an overall valid
representation.

This construction motivates the next definition.

Definition 8.9. For a triangulation G with outer cycle Co = (s1, s2, s3) and unbounded face
f∞, the Co-regular primal-dual circle packing representation of G is the unique representation
where Co is embedded as an equilateral triangle, and Cf∞ is the circle of radius 1 inscribed in
the triangle.

Our algorithm will therefore focus on finding the Co-regular representation, using the charac-
terization of the radii from Theorem 8.8.

8.2.3 Existence of a good spanning tree

Throughout this section, G denotes a triangulation with outer cycle Co = (s1, s2, s3) and
unbounded face f∞; r denotes the radii vector of the unique Co-regular primal-dual circle
packing of G; Ĥ denotes the angle graph of G; and H denotes the reduced angle graph.

The Co-regular circle packing representation of G naturally gives rise to a simultaneous
planar embedding of G,G∗, and H. All subsequent arguments will be in the context of this
embedding.

Definition 8.10. A good edge in Ĥ with respect to r is an edge uw ∈ E(Ĥ) so that
1/(2n) ≤ ru/rw ≤ 2n. A set of edges is good if each edge in the set is good. Predictably,
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what is not good is bad.

Since we examine the radius of a vertex in relation to those of its neighbours, the next
definition is natural:

Definition 8.11. Let u ∈ V (Ĥ). For any good edge uw, we say w is a good neighbour of u.
For a bad edge uw, we say w is a bad neighbour of u; we further specify that w is a large
neighbour if rw/ru > 2n or a small neighbour if ru/rw > 2n.

Recall that H is a bipartite graph, with vertex partitions V and V ∗ − f∞. For the last piece
of notation, we will call a vertex u of H a V -vertex if it is in the first partition, and call u an
F -vertex if it is in the second partition.

Our main theorem in this section is the following:

Theorem 8.12. There exists a good spanning tree in Ĥ with respect to r.

Proof. First, we consider f∞ ∈ V (Ĥ): It has radius 1, and is inscribed in the equilateral
triangle with vertices Co = {s1, s2, s3}. Hence, rsi = tan π

3
for each si ∈ Co. It follows that all

of f∞’s incident edges in Ĥ are good, so any good spanning tree in H extends to one in Ĥ.

It remains to find a good spanning tree in H. To continue, we require the following lemma
regarding a special circle packing structure.

Lemma 8.13. Let C1 and C2 be two circles with centers X and Y and radii R1, R2 respectively,
and tangent at a point P . Suppose without loss of generality R2 ≤ R1. Let Q be a point
of distance R2/n from P , so that PQ and XY are perpendicular. Let L1 be a line segment
parallel to XY through Q with endpoints on C1 and C2. Let L2 be the line parallel to XY ,
further away from XY than L1, and tangent to C2.

Suppose we place a family C = {D1, . . . , Dm} of m internally-disjoint circles (of any radius)
in the plane, where m < n, such that:

1. no circles from C intersect C1 or C2 in the interior,

2. at least one circle from C intersects L1, and

3. the tangency graph of C is connected,

then all circles in C are contained in the region bounded by C1, C2, L2.
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X P Y
R1 R2

L1

L2

Q

C1 C2

Figure 8.5: Illustration of Lemma 8.13. Any family C of circles satisfying the conditions of
the lemma must be contained in the shaded region. The diagram is slightly deceptive: in
reality Q is much closer to P than depicted.

Proof. Let h(C) denote the maximum Euclidean distance between a point x on a circle in C
and the line XY ; in other words, h(C) = max{d(x,XY ) : x ∈

⋃
D∈C C}. We want to show

h(C) < R2.

Suppose we place the circles one at a time while maintaining tangency, starting with D1

intersecting L1. By elementary geometry, it is clear that each additional circle Di should be
below Di−1, tangent to only Di−1, and be of maximum size possible, i.e. tangent to both C1

and C2. Given this observation, it suffices to consider when R1 = R2 = R.

In this case, h(C) is maximized when all the circles are arranged as described above, and
have their centers on the line through P and Q. Let ai be the radius of Di for each i ∈ [m],
and let a0 = d(P,Q). By the Pythagorean Theorem, we know that if h0 = d(P,Q) and
hi = h({D1, . . . , Di}), then

(ai+1 + hi)
2 +R2 = (ai+1 +R)2.

Hence we have the following recurrence relationship:

h0 = R/n

hi+1 = hi + 2ai+1 = hi

(
1 +

hi
R− hi

)
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If we let bi = 2R/hi, then

b0 = 2n

2R

bi+1

=
2R

bi

(
1 +

2

bi − 2

)
bi+1 =

bi
1 + 2

bi−2

= bi − 2.

So hm = R
bm

= R
2n−2m

< R, as desired.

Recall that r satisfy the following angle constraints for each u ∈ V (H)− Co:∑
w : uw∈E(H)

arctan
rw
ru

= π (8.2)

Claim 8.14. Every F -vertex in H can have at most one large neighbour. Furthermore, they
have no small neighbours. Consequently, there are no F -vertices with only bad neighbours.

Proof. W require G to be a triangulation, so that all F -vertices have degree three.

Suppose f is an F -vertex with 2 large neighbours v1, v2, and without loss of generality,
rv1 ≤ rv2 . By the angle constraints in Equation (8.2), f ’s third neighbour u must be small.

Consider the primal-dual circle packing locally around f : The circles Cv1 , Cv2 are tangent at
a point P , which is on the line L connecting the centers of the two circles. Furthermore, Cf
is tangent to L at the point P . By the definition of large neighbours, we know rf < r1/2n.
Moreover, Cu must intersect Cf , so Cu is at a distance of at most 2rf away from P . Now, let
us restrict our attention to primal circles (which include Cv1 , Cv2 , Cu) and apply Lemma 8.13.

Let NG(v1) = {v2, u = w1, . . . , wl} denote the neighbours of v1 in G in cyclic order. Since
G is a triangulation, we know that wiwi+1 ∈ E(G) for each i ∈ [l], and wlv2 ∈ E(G). This
means in the primal circle packing, Cwi is tangent to Cwi+1

for each i, and Cwl is tangent to
Cv2 . There are two cases to consider:

1. v1 /∈ Co: In this case, v1, v2, wl are the vertices of a bounded face of G. Hence, the circles
Cv2 , Cu, Cw1 , . . . , Cwl are consecutively tangent and surround Cv1 . This contradicts the
conclusion of Lemma 8.13.

2. v1 ∈ Co: Note that the primal circles with the largest radii correspond to the vertices
in Co. Since rv2 ≥ rv1 , we must have rv2 = rv1 and v2 ∈ Co. Then wl ∈ Co must be
the third vertex on the boundary of f∞, with v1, v2, wl forming an equilateral triangle.
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v1v2
u

w2

w3

wl

wl−1

v1v2

wl

u

Figure 8.6: Illustration of the primal circles around v1. There are two possible cases: in the
former, circles corresponding to the neighbours of v1 surround Cv1 ; in the latter, they do not.
Ellipses indicate additional Cwi ’s that are tangent to Cv1 .

Staring at the position of Cwl , we see that this also contradicts the conclusion of
Lemma 8.13.

So we have shown that f has at most one large neighbour.

Suppose f has a small neighbour u and two other neighbours v, w, at most one of which is
large. Then by the angle constraints in (8.2),

π = arctan
ru
rf

+ arctan
rv
rf

+ arctan
rw
rf

< arctann−2 + arctann2 + π/2

= π,
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a contradiction.

Claim 8.15. There are no V -vertices in H with only bad neighbours.

Proof. Suppose v is a V -vertex with only bad neighbours. Again, by Equation (8.2), two of
its neighbours are large and the remaining are small. Let f denote one of its large neighbours.
But then v is a small neighbour of f , contradicting the previous claim.

We have shown there are no vertices incident to only bad edges. Before proceeding, we
observe the following:

Claim 8.16. Recall Co = (s1, s2, s3) is the outer cycle of G. Let t1, t2, t3 be F -vertices
corresponding to faces in G that are adjacent to f∞. Let B = (s1, t1, s2, t2, s3, t3) be the outer
cycle of H. Then all the edges of H[B] are good.

Proof. Suppose without loss of generality that siti is a bad edge. Since s1, s2, s3 have equal
radii, tisi+1 must also be a bad edge. This contradicts Claim 8.14 which specifies that ti has
no small neighbours and at most one large neighbour.

It remains to show there are no bad cuts in H. Suppose for a contradiction T ⊂ E(H) is a
minimal bad cut. Since H is a planar graph, T ∗ is a cycle in the dual graph H∗.

For a face zi in H, we denote its dual vertex in H∗ by z∗i . Recall the dual of an edge
z∗x∗ ∈ E(H∗) is a well-defined edge that is contained in both boundaries of z, x ∈ F (H).
Suppose the edges of T ∗, in order, are z∗1z∗2 , z∗2z∗3 , . . . , z∗kz∗1 . Then (z1, . . . , zk) is a sequence
of distinct faces of H such that T = {e1, e2, . . . , ek}, where ei is a well-defined edge on the
boundaries of both zi and zi+1, and ek is on the boundaries of both zk and z1.

Consider H[T ], the subgraph induced by the edges of T : Since F -vertices in H[T ] have degree
one, the components of H[T ] must be star graphs. If there is only one component, say with
center u and leaves N(u), then T disconnects u from the rest of the graph, contradicting the
fact that u must have a good neighbour. Hence there must be at least two components in
H[T ]. (For example, in Figure 8.7, H[T ] is in red and consists of 4 components.)

Suppose ei and ei+1 are in distinct components of H[T ]. Both edges are on the boundary of
face zi. By Claim 8.16, we know zi is not the unbounded face of H. Recall each bounded face
of H has size four, hence we may denote the four vertices on the boundary of zi by u, f, v, g,
where u, v are V -vertices and f, g are F -vertices. Suppose without loss of generality ei = uf .
Then since ei and ei+1 are not connected, we must have ei+1 = vg.
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z1
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z3

z4
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z7

z8

e1
e2

e3

e4
e5
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e8

Figure 8.7: An illustration of what T looks like in H with respect to the dual. A subgraph
of H is shown in black, with edges of T highlighted in red. Each zi denotes a face in H,
and correspond to a vertex z∗i in the dual. T ∗ is shown in dashed blue. (Note the vertices
are in the correct relative locations but do not necessarily reflect a proper circle packing
representation.)

u
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ru

rf

rv

rg

Figure 8.8: The face zi in H. Note the radii are not necessarily accurate.

Recall ru > 2n · rf and rv > 2n · rg by definition of bad edges and the fact that F -vertices
only have big neighbours. Consider the edge fv:

1. If rv > 2n · rf , then both u and v are large neighbours of f ;

2. If n2 · rf ≥ rv, then ru > 2n · rf ≥ rv > 2n · rg, so both u and v are large neighbours
of g.

In both cases, we get a contradiction to Claim 8.14. It follows that there are no bad cuts in
H, which concludes the overall proof.
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As a corollary of Theorem 8.12, we have the following:

Corollary 8.17 ([130]). Let G be a triangulation with |V (G)|+ |V (G∗)| = n. Let r be the
radii vector of a valid primal-dual circle packing for G. Then rmax/rmin ≤ (2n)n.

We remark here that if the maximum degree of G is ∆, then 2n in the definition of good edge
can be replaced by 2∆, and the good tree proof would still hold true. Furthermore, for any
edge vf ∈ E(H), we can show there is a good path from v to f of length O(∆) by a careful
case analysis around vertex v similar to above. It follows that rmax/rmin ≤ ∆O(∆D) where D
is the diameter of G. The proof is omitted.

Finally, although we assume in this section that the original graph G is a triangulation, we
conjecture the analogous result holds for general graphs:

Conjecture 8.18. Let G be a 3-connected planar graph, and let ĤG be its angle graph.
Suppose r is the radii vector of a valid primal-dual circle packing representation for G. Then
there exists a good tree in ĤG with respect to r.

8.3 Computing the primal-dual circle packing

Throughout this section, G denotes the triangulation with outer cycle Co = (s1, s2, s3) and
unbounded face f∞ given as input to the algorithm; Ĥ denotes the angle graph of G and H
the reduced angle graph. Let n = |V (G)|+ |F (G)|−1 = |V (H)|. We index vectors by vertices
rather than integers. Our goal is to compute the radii for the Co-regular representation of G.
Recall rf∞ , rs1 , rs2 , rs3 are fixed by definition of Co-regularity.

8.3.1 Convex formulation

We transform the combinatorial question of finding the radii into a minimization problem of
a continuous function. A variant of this formulation was first given in [47].

Definition 8.19. Consider the following convex function Φ over RV (H)\Co :

Φ(x)
def
= 2π

∑
u∈V (H)

xu +
∑

uw∈E(H)

(
F (xu − xw) + F (xw − xu)−

π

2
(xu + xw)

)
(8.3)

where F (x) =
∫ x
−∞ arctan(et)dt, and instances of xsi in the expression take constant value of

log tan(π
3
) for all si ∈ Co.

The construction of this function Φ is motivated by the optimality condition at its minimum
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x?: for all u ∈ V (H) \ Co,

0 =
∂Φ

∂xu
(x?) (8.4)

=
∑

w : uw∈E(H)

(
F ′(x?u − x?w)− F ′(x?w − x?u)−

π

2

)
+ 2π

=
∑

w : uw∈E(H)

(
arctan(ex

?
u−x?w)− arctan(ex

?
w−x?u)− π

2

)
+ 2π

= −2
∑

w : uw∈E(H)

arctan(ex
?
w−x?u) + 2π

where we used that arctan(u) + arctan( 1
u
) = π/2 for all u > 0 at the end. Hence, exp(x?)

satisfies the angle constraints from Equation (8.1) for all u ∈ V (H) \ Co.

8.3.2 Correctness

To show the minimizer of Φ gives a primal-dual circle-packing, we first show Φ is strictly
convex, which implies the solution is unique.

Observe that the definitions are reminiscent of Laplacian matrices from earlier chapters.

Lemma 8.20. For any x,

∇2Φ(x) =
∑

uw∈E(H)

2F ′′(xu − xw)buwb
>
uw

where buw ∈ RV (H)\Co is the vector with 1 in the u entry, −1 in the w entry, and zeros
everywhere else. If u or v or both belongs to Co, then buv has only one or no non-zero entries.
Furthermore,

∇2Φ(x) <
2

n2
· min
uw∈E(T )

F ′′(xu − xw) · I � 0

for any spanning tree T ⊂ H.

Proof. The formula of ∇2Φ(x) follows from direct calculation. To prove ∇2Φ(x) is positive-
definite, we pick any spanning tree T in H. Note that

∇2Φ(x) <
∑

uw∈E(T )

2F ′′(xu − xw)buwb
>
uw

<

(
min

uw∈E(T )
2F ′′(xu − xw)

) ∑
uw∈E(T )

buwb
>
uw. (8.5)
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Fix any h ∈ RV (H)\Co with ‖h‖2
2 = 1. Then∑

uw∈E(T )

(b>uwh)2 =
∑

uw∈E(T )

(hu − hw)2,

where we define hs = 0 for all s ∈ Co. Since ‖h‖2
2 = 1, there exists a vertex v such that

hv ≥ 1√
n
. Now, consider the path P from v to some s ∈ Co. We have∑

uw∈E(T )

(b>uwh)2 ≥
∑
uw∈P

(hu − hw)2

≥
∑
uw

(
1√
n|P |

)2

=
1

n|P |
≥ 1

n2
,

where we used the fact that the minimum of
∑

uw∈P (hu − hw)2 is attained by the vector h
whose entries decrease from hv = 1√

n
to hs = 0 uniformly on the path P . Using this in (8.5),

we have that for any h with ‖h‖2
2 = 1,

h>∇2Φ(x)h ≥ 2

n2
· min
uw∈E(T )

F ′′(xu − xw)

Since F ′′(x) = exp(x)
exp(2x)+1

> 0 for all x, we have

∇2Φ(x) <
2

n2
· min
uw∈E(T )

F ′′(xu − xw) · I � 0.

This proves that Φ is strictly convex.

Now, we prove that the minimizer of Φ is indeed a primal-dual circle packing.

Theorem 8.21. Let x? be the minimizer of Φ. Then, r? = exp(x?), where the exponentiation
is applied coordinate-wise, is the radii vector of the unique Co-regular primal-dual circle
packing representation of G.

Proof. As discussed in Section 8.2.2, there exists a unique Co-regular circle packing represen-
tation. Theorem 8.8 shows that the associated radii vector r satisfies∑

w : uw∈E(H)

arctan(rw/ru) = π,

for all u ∈ V (H) \ Co. By the formula of ∇Φ in Equation (8.4), we know ∇Φ(log r) = 0;
therefore, r is a minimizer of Φ. Since Φ is strictly convex by Lemma 8.20, the minimizer is
unique. Hence, r? = r.
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8.3.3 Algorithm for second-order robust functions

To solve for the minimizer of Φ, a convex programming result is used as a black-box. We
define the relevant terminology below, and then present the theorem.

Definition 8.22. A function f is second-order robust with respect to `∞ if for any x,y ∈
dom f with ‖x− y‖∞ ≤ 1,

1

c
∇2f(x) 4 ∇2f(y) 4 c∇2f(x)

for some universal constant c > 0.

Intuitively, the Hessian of a second-order robust function does not change too much within a
unit ball.

Theorem 8.23 ([46, Thm 3.2]). Let g : Rn → R be a second-order robust function with
respect to `∞, such that its Hessian is symmetric diagonally dominant (SDD) with non-positive
off-diagonals, and has m non-zero entries. Given a starting point x(0) ∈ Rn, we can compute
a point x such that g(x)− g(x?) ≤ ε in expected time

Õ

(
(m+ T )(1 +D∞) log

(
g(x(0))− g(x?)

ε

))
where x? is a minimizer of g, D∞ = supx : g(x)≤g(x(0))

∥∥x− x(0)
∥∥
∞ is the `∞-diameter of the

corresponding level-set of g, and T is the time required to compute the gradient and Hessian
of g.

The algorithm behind the above result essentially uses Newton’s method iteratively, each time
optimizing within a unit `∞-ball. The key component involves approximately minimizing a
SDD matrix with non-positive off-diagonals in nearly linear time, by recursively approximating
Schur complements.

For our function Φ, there are two difficulties in using this theorem. First, the level-set
diameter D∞ could be very large because Φ is only slightly strongly-convex. So it would be
better if D∞ were replaced with the distance between x(0) and x?. Second, we are multiplying
D∞ and log(1/ε) in the runtime expression when both terms could be very large; we would
like to add the two instead. It turns out both can be achieved at the same time by modifying
the objective.

Theorem 8.24. Let g : Rn → R be a second-order robust function with respect to `∞, such
that its Hessian is symmetric diagonally dominant with non-positive off-diagonals, and has
m non-zero entries. Let x? be the minimizer of g, and suppose that ∇2g(x?) < αI for some
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α < 1. Given a starting point x(0) ∈ Rn and any ε ≤ α/2, we can compute a point x such
that g(x)− g(x?) ≤ ε in expected time

Õ

(
(m+ T )

(
R∞ log2

(
g(x(0))− g(x?)

α

)
+ log

(α
ε

)))
where R∞ =

∥∥x? − x(0)
∥∥
∞, and T is the time required to compute the gradient and Hessian

of g. Furthermore, we have that ‖x− x?‖2
2 ≤ ε/α.

Proof. The algorithm builds on Theorem 8.23, and the high level idea can be broken into two
steps: The first step transforms the dependence on the diameter of the level set in Theorem
8.23 to the `∞ distance

∥∥x(0) − x?
∥∥
∞ from the initial point; the second step leverages the

strong-convexity at the minimum to obtain an improved running time.

For the first step, given the function g(x) and an initial point x(0), we construct an auxiliary
function g̃(x) that adds a small convex penalty reflecting the distance between x and the
initial point x(0). Analytically, this allows us to replace the dependency on the diameter of
the level-set in Theorem 8.23 with the initial `∞-distance

∥∥x(0) − x?
∥∥.

The second step leverages the fact that ∇g(x?) < αI at the minimum. Since the Hessian of g
is also robust, it is < Ω(α)I near the minimum. Strong convexity implies that the additive
error at a point is proportional to the distance from the point to x?. Hence, running a robust
Newton’s method to roughly α additive accuracy guarantees that the output point x(1) is
within an `∞ distance of roughly 1 from the minimum. The runtime to this point is less than
running to ε-accuracy when α > ε. We then run the algorithm a second time to ε-accuracy
starting from x(1); this instance has a much reduced R∞ distance. The runtime for the two
phases together is lower compared to running the algorithm just once starting from x(0).

The above overview is informal; in particular, the two steps cannot be as cleanly separated as
described. Indeed, when constructing the auxiliary function g̃, we require prior knowledge
of the initial distance R∞ =

∥∥x(0) − x?
∥∥
∞ within a constant factor. To overcome this, we

use a standard doubling trick: Starting from a safe lower bound, we presuppose an estimate
for R∞ and run the two steps as above. If the estimate for R∞ was too small (which we can
detect), then we double our guess and try again. Since the overall runtime is proportional to
R∞, we do not add to it asymptotically.

We now describe the algorithm and prove the theorem in full detail. To begin, suppose
R∞ :=

∥∥x? − x(0)
∥∥
∞ is given. To minimize g, we construct a new function

g̃(x) = g(x) +
ε

4n

∑
i

cosh

(
xi − x(0)

i

R∞

)
.
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Note that if x† is the minimizer of g̃, then

g̃(x†) = min
x
g̃(x)

≤ g(x?) +
ε

4n

∑
i

cosh

(
x?i − x

(0)
i

R∞

)
≤ g(x?) +

ε

4n

∑
i

cosh(1)

≤ g(x?) +
ε

2
,

and g̃(x) ≥ g(x) for all x. Therefore, to minimize g with ε accuracy, it suffices to minimize g̃
with ε/2 accuracy.

We check the condition of Theorem 8.23 for g̃. The Hessian of g̃ is simply the Hessian of g plus
a diagonal matrix, so ∇2g̃ is still SDD with non-positive off-diagonals. A simple calculation
shows that g̃ is second-order robust. To bound D∞ := supx : g̃(x)≤g̃(x(0))

∥∥x− x(0)
∥∥
∞, note

that for any x with g̃(x) ≤ g̃(x(0)), we have

g̃(x0) = g(x(0)) + ε/4

≥ g(x) +
ε

4n

∑
i

cosh

(
xi − x(0)

i

R∞

)
≥ g(x?) +

ε

8n
exp

(
‖x− x(0)‖∞

R∞

)
.

Hence,

D∞ = sup
x : g̃(x)≤g̃(x(0))

‖x− x(0)‖∞

≤ R∞ log

(
8n

ε
(g(x(0))− g(x?) + ε/4)

)
.

We apply Theorem 8.23 to g̃ to get a point x such that g̃(x)− g̃(x†) < ε/2, using time

Õ

(
(m+ T )(1 +D∞) log

(
g̃(x(0))− g̃(x†)

ε/2

))
= Õ

(
(m+ T )

(
1 + log

(
g(x(0))− g(x?)

ε

)
R∞

)
log

(
g(x(0))− g(x?)

ε

))
.

This x minimizes g to ε accuracy. Henceforth we view the above reduction from g to g̃ as a
black-box. Now, we make some further observations regarding g.
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Lemma 8.25. For any constant C ≤ 1 and x such that ‖x− x?‖∞ = C, we have g(x) ≥
g(x?)+Ω(α) ·C2. Furthermore, if x′ satisfies g(x′)−g(x?) ≤ o(α) ·C2, then ‖x′ − x?‖∞ ≤ C.

Proof. Since ∇2g(x?) < α · I and g is second-order robust, ∇2g(x) < Ω(α) · I for all x with
‖x− x?‖∞ ≤ 1. Applying the Mean Value Theorem for x with ‖x− x?‖∞ = C, we get

g(x) ≥ g(x?) + Ω(α) · ‖x− x?‖2
2 ≥ g(x?) + Ω(α) · C2. (8.6)

Moreover, by convexity of g, we have g(x) ≥ g(x?)+Ω(α) ·C2 for all x where ‖x−x?‖∞ ≥ C.
The second part of the lemma is the contrapositive.

To achieve the runtime stated in the theorem, we minimize g in two phases. In the first
phase, we use ε1 = α/ log2(α/ε) and initial point x(0) as given, to get a point x(1) such that
g(x(1))− g(x?) ≤ ε1. By Lemma 8.25, we have ‖x(1) − x?‖∞ ≤ 1/ log(α/ε). In the second
phase, we minimize to ε error. However, since x(1) can be used as the initial point, we know
R∞ = 1/ log(α/ε). The algorithm returns x(2) such that g(x(2))− g(x?) ≤ ε. Summing the
runtime of the two phases carefully, we get the desired total time,

Õ

(
(m+ T )

(
R∞ log2

(
g(x(0))− g(x?)

α

)
+ log

(α
ε

)))
,

where factors of log log(α/ε) are hidden. The claim
∥∥x(2) − x?

∥∥2

2
≤ ε/α follows from Equa-

tion (8.6) in Lemma 8.25.

Finally, we resolve the initial assumption of R∞ being given. Note that we only use R∞
during the first phase of the algorithm, where we use the target accuracy ε1. To run the first
phase without knowing R∞, we apply Lemma 8.25 again in a doubling trick.

Let x(r) = arg min‖x‖∞≤r g(x). Consider x̂ = x(r)−x?
‖x(r)−x?‖∞

, which satisfies ‖x? − (x? + x̂)‖∞ =

1. Hence, by Lemma 8.25,
g(x? + x̂) ≥ g(x?) + Ω(α).

Furthermore, x? + x̂ is on the straight line connecting x? and x(r). Since the slope of g is
increasing from x? to x(r), if ‖x?‖∞ > 2r, we also have

g(x(r)) ≥ g(x(r) − x̂) + Ω(α).

Note that
∥∥x(r) − x̂

∥∥
∞ ≤ 2r. This shows that ‖x?‖∞ > 2r implies

min
‖x‖∞≤r

g(x) ≥ min
‖x‖∞≤2r

g(x) + Ω(α).

Hence, if R∞ > 2r, then we can detect it by comparing x(r) and x(2r). To estimate R∞, first
we run the algorithm while pretending R∞ = 1 and compare the result against R∞ = 2. If it



163

fails this test, then we compare the result for R∞ = 2 against R∞ = 4, and so on. We stop
when the test passes, at which point the guess for R∞ is correct to a constant factor, and the
true x? has been found. This does not affect the runtime asymptotically, since the total time
simply involves a term 1 + 2 + · · ·+R∞ instead of R∞.

8.3.4 Strong convexity at the minimum

To apply Theorem 8.24, we need to show Φ is strongly-convex at x?.

Lemma 8.26. Let x? be the minimizer of Φ. Then,

∇2Φ(x?) <
1

n3
I.

Proof. Lemma 8.20 shows that

∇2Φ(x) <
2

n2
· min
uw∈E(T )

F ′′(xu − xw) · I (8.7)

for any spanning tree T ⊂ H. Theorem 8.12 shows that there is a spanning tree T such that
|xu − xw| ≤ log 2n for any uw ∈ E(T ). Hence, we have

F ′′(xu − xw) ≥ exp(−|xu − xw|) ≥ (2n)−1

for any uw ∈ E(T ). Putting it into Equation (8.7) gives the desired bound.

8.3.5 Result

We combine the previous sections for the overall result.

Theorem 8.27. Let r ∈ RV (H)\Co be the radii of the Co-regular primal-dual circle packing
representation of the triangulation G. Let x? = log r. For any 0 < ε < 1

2
, we can compute a

point x such that ‖x− x?‖∞ ≤ ε in expected time

Õ

(
n log

R

ε

)
,

where R = rmax/rmin is the ratio of the maximum to minimum radius of the circles.

Proof. We check the conditions of Theorem 8.24. Lemma 8.20 shows that

∇2Φ(x) =
∑

uw∈E(H)

2F ′′(xu − xw)buwb
>
uw.
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Since F ′′ > 0, we know ∇2Φ(x) is a positive combination of buwb>uw’s, which are each
SDD with non-positive off-diagonals. Hence, ∇2Φ(x) is an SDD matrix with non-positive
off-diagonals.

To show second-order robustness, note that if x changes by at most 1 in the `∞-norm, then
xu − xw changes by at most 2. Recall

F ′′(xu − xw) =
exp(xu − xw)

exp(2(xu − xw)) + 1
,

so F ′′ changes by at most a factor of e2. It follows that ∇2Φ changes by at most a constant
multiplicative factor.

Lemma 8.26 shows that ∇2Φ(x?) < αI with α = n−3.

Now, we can apply Theorem 8.24 as a black-box. Since the Hessian has O(n) entries, each of
which consists of a constant number of hyperbolic computations, both m and T are O(n). A
simple initial point x(0) is the all zeros vector; it follows that Φ(x(0)) = O(n).

R∞ in Theorem 8.24 is precisely ‖x?‖∞. Since x?u = log r?u ≤ 0 for all u ∈ V (H) \ Co, we
know x? satisfies ‖x?‖∞ = − log r?min < log(r?max/r

?
min), where r?min is the radius of the smallest

circle in the true circle packing representation, and r?max = tan(π
3
) is the radius of the largest

circle, attained by vertices in Co. Therefore R∞ = ‖x?‖∞ ≤ logR.

Lastly we estimate Φ(x?). Note that π
2
|z| ≤ F (z) + F (−z) ≤ π

2
|z| + 2 for all z ∈ R. By

Corollary 8.17, ‖x?‖∞ = Õ(n) in the worst case. Hence,

− Φ(x?)

≤
∑

uw∈E(H)

(π
2

(x?u + x?w)− π

2
|x?u − x?w|

)
+ 2π

∑
u∈V (H)

x?u

≤ Õ(n2).

It follows that Φ(x(0))− Φ(x?) ≤ Õ(n2).

Now, Theorem 8.24 shows how to find x with ‖x− x?‖∞ ≤ ε in time

Õ
(
n
(

logR log n+ log
n

ε

))
= Õ

(
n log

R

ε

)
.

Exponentiating the resulting x, we get r such that 1− 2ε ≤ ru/r?u ≤ 1 + 2ε for all u.

8.3.6 Computing the locations of the vertices

After approximating the radii, we embed the primal and dual vertices using the reduced angle
graph H. We emphasize at this point that H is already a plane graph, so the cyclic ordering
of neighbours around each vertex is known.
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u

w1 w2
Pw1uw2

Figure 8.9: Embedding H locally around u. The two kites Kuw1 and Kuw2 are shown in
dashed lines. After u and w1 are embedded, the kite Kuw2 is placed with one vertex at u,
and one side tangent to Kuw1 along the line uPw1uw2 . Its side lengths are ru and rw2 .

Suppose r is the ε-approximation of the radii we obtained, and r? is the true radii vector of the
Co-regular primal-dual representation. We define an edge uw in H to be approximately-good
(with respect to r) if it satisfies (1 − ε)/(1 + ε) · (2n)−1 ≤ ru/rw ≤ (1 + ε)/(1 − ε) · 2n,
and approximately-bad if it does not. Note that a good edge (with respect to r?) is an
approximately-good edge.

Recall the outer cycle of G is Co = (s1, s2, s3), and let the outer cycle of H be denoted by
B = (s1, t1, s2, t2, s3, t3). We may assume for both the true embedding and our appropximate
embedding, that s1 is positioned at the origin, and s1s2 lie on the x-axis.

The high-level idea is to embed the vertices one-by-one following a breadth-first style traversal
through H using only approximately-good edges. Since the true positions of s1, s2, s3 ∈ Co
are known, and the outer cycle of H consists of good edges, t1, t2, t3 are embedded first.
We proceed in a breadth-first fashion with one additional traversal restriction: Suppose we
visited the vertex u, and let the neighbours of u be w1, . . . , wm in cyclic order. We can visit
a neighbour wi only if either wi−1 or wi+1 has been visited already. This is so that when
we move from u to an unvisited neighbour wi (suppose wi−1 was visited), we can place the
kite Kuwi (see Section 8.2.2) with one point at u and one side tangent to the previous kite
Kuwi−1

. The kite in turn determines the position of wi in the approximate circle packing
representation. First, we show all vertices in H can be reached this way.

Suppose the vertex w has neighbours v1, . . . , vm in cyclic order, and we visited vi from w

but cannot reach vi+1, due to the fact that wvi+1 is an approximately-bad edge. Observe
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vi+1

w = x1

x2

x3

x4

x5

vi = y1

y2

y3

y4

Figure 8.10: H locally around a vertex vi+1. The bad edges are shown in red; they may not
be all approximately-bad. However, an approximately-good path from w to vi+1 exists and
can be followed given the traversal restrictions. (The angles in this diagram do not reflect a
correct circle packing representation.)

that w, vi, vi+1 are in a face together with another vertex x2 (recall any bad edge is on
the boundaries of two faces of degree four). By the arguments in Section 8.2.3 and a
simple case analysis, we see that either we can reach vi+1 from w by going through vi and
then x2 (implying wvi, vix2, xvi+1 are all approximately-good edges), or vi+1 is an V -vertex,
vi+1x2, vi+1w are bad edges, and vix2 is a good edge. In the latter case, let the neighbours of
vi+1 be w = x1, x2, . . . , xl in cyclic order, and suppose j ≥ 3 is the smallest index at which
vi+1xj is a good edge. Note that for each k < j, the vertices vi+1, xk, xk+1 are in a face
together with another vertex yk. As vi+1 is a V -vertex, all the x’s are F -vertices of degree
three; furthermore, since vi+1xk is a bad edge, we know xkyk and xkyk+1 must be good and
hence approximately-good. (See Figure 8.10 for an example with j = 5.) It follows that
(w = x1, y1, x2, y2, . . . , yj−1, xj, vi+1) is an approximately-good path from w to vi+1, and going
along this path does not violate our traversal restrictions. So we have shown that all vertices
in H can be reached.

For any edge uw, we can define the angle θuw as half the angle contributed by the kite Kuw

at u (see Section 8.2.2). Compared to the true angle θ?uw, the error is

|θuw − θ?uw| =
∣∣∣∣arctan

rw
ru
− arctan

r?w
r?u

∣∣∣∣ ≤ 4ε
r?w
r?u
,

where we used a coarse first order approximation, and the fact that ru is an ε-approximation
of r?u for all vertices u. Along a good edge, this error is bounded by 8εn.

For an edge uw whose embedding has been approximated, we can further define αuw as
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the angle formed by the edge uw (viewed as directed from u to w) and the x-axis, and
α?uw as the true angle. Observe that if αuw − α?uw = δ, then αwu − α?wu = δ. Furthermore,
suppose uw1, uw2 are approximately-good edges, and that we embed w2 right after u and w1.
Then

|αuw2 − α?uw2
|

≤|αuw1 − α?uw1
|+ |θuw1 − θ?uw1

|+ |θuw2 − θ?uw2
|.

In other words, the angle errors accumulate linearly as we traverse through H. Since only
approximately-good edges are used, we conclude that for all edge uw used in the traversal,
|αuw − α?uw| ≤ O(εn2).

Finally, we compare the approximate position p of the vertices with the true positions p?.
Suppose u is embedded in its true position, and v, w are consecutive neighbours of u such
that uv, uw are approximately-good edges, and v has been embedded. In embedding w, error
is introduced by αuw as well as by ru and rw. Specifically, p?w is at a distance of

√
r?u

2 + r?w
2

away from p?u in the direction given by α?uw, while the approximate position pw will be at a
distance of

√
r2
u + r2

w away in the direction αuw. Basic geometry shows

‖p?w − pw‖2

≤ |
√
r?u

2 + r?w
2 −

√
r2
u + r2

w|+ |αuw − α?uw|
√
r2
u + r2

w

≤ (O(ε) + |αuw − α?uw|)
√
r2
u + r2

w

≤ O(εn2),

where we use the fact that ru ≤ 1 for all u ∈ V (H) \ Co. The error accumulates linearly
as we embed each vertex, hence ‖p?u − pu‖2 ≤ O(εn3) for all vertices u. It follows that if
r is an ε/(n3R)-approximation of the true radii, then we can recover positions p such that
‖pu − p?u‖2 ≤ ε/R for each vertex u. Changing ε by a polynomial factor of R and n does not
affect the runtime in the O-notation; this completes the proof of Theorem 8.4.

8.3.7 A remark about numerical precision

In the proof of Theorem 8.27, we only apply the algorithm from [46] on convex functions g̃
that are well-conditioned; specifically, n−O(1) · I 4 ∇2g̃(x) 4 nO(1) · I for all x the algorithm
queries. In this case, it suffices to perform all calculations in finite-precision with O(log(nR

ε
))

bits (See Section 4.3 in [46] for the discussion). Therefore, with O(log(nR
ε

)) bits calculations,
we can compute the radius with (1±ε) multiplicative error and the location with ε/R additive
error.
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8.4 Computing the primal circle packing

Finally, we prove Theorem 8.6 as a corollary of Theorem 8.4.

We may assume G is 2-edge-connected, otherwise, we can simply split the graph at the
cut-edge, compute the circle packing representations for the two components separately, and
combine them at the edge after rescaling appropriately.

First, a planar embedding of G can be found in linear time such that all face boundaries are
cycles. Next, G can be triangulated by adding a vertex in each face of degree greater than
three and connecting it to all the vertices on the face boundary. Let V + denote the set of
additional vertices, and let T denote the resulting triangulation with outer cycle Co. Note
that |V (T )| = O(n), since G is planar.

We then run the primal-dual circle packing algorithm on T , which returns radius ru and
position pu for each u ∈ V (T ), corresponding to an approximate Co-regular representation
(See Section 8.2.2). By discarding the dual graph and additional vertices V +, we obtain an
ε-approximation of the primal circle packing of G.

The total runtime is Õ(|V (T )| logRPD/ε), where RPD = r?PD,max/r
?
PD,min is the ratio of the

maximum to minimum radius in the target primal-dual circle packing of T . Let R = r?max/r
?
min

be the ratio of the maximum to minimum radius in the target primal circle packing. If
RPD ≤ poly(n)R, then Õ(|V (T )| logRPD/ε) ≤ Õ(n logR/ε), and we have the claimed
runtime.

Note that r?PD,max = tan(π/3) is attained by one of the vertices on the outer cycle Co of T .
By construction of T , at least two of the vertices on Co belong to V , hence r?max = r?PD,max.
It remains to show that r?min is polynomially close to r?PD,min.

We will make use of the terminology and lemmas introduced in Section 8.2.3. There are two
cases to consider:

1. r?PD,min is attained by some primal vertex v ∈ V (T ). If v ∈ V , then we are done. So
we may assume v ∈ V +. In the reduced graph HT , since v is an V -vertex, it at least
one good neighbour f by Claim 8.15; moreover, f has at most one bad neighbour by
Claim 8.14, so it has another good neighbour w 6= v. Note that w is at distance two
from v in HT , implying that w is a neighbour of v in T, and therefore w ∈ V . Using
properties of good edges, we get r?w ≤ (2n)2r?v .

2. r?PD,min is attained by some dual vertex f ∈ V (T ?). We know f is an F -vertex in HT

and has at least two good neighbours by Claim 8.14; moreover, it has at least two
neighbours in V , since every face in T contains at least two vertices from V on its
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boundary. It follows that f has a good neighbour w where w ∈ V , so r?w ≤ 2nr?f .

In both cases, there exists w ∈ V such that r?w ≤ (2n)2r?PD,min. Hence, r?min ≤ (2n)2r?PD,min,
as desired.
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